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Abstract. In order to solve the problem of low-frequency vibration isolation, a new vibration 
isolator with quasi-zero-stiffness characteristic was designed and the relationship among design 
parameters was analyzed. Dynamic behavior was calculated based on harmonic balance method and 
simulation of the vibration isolation performance was carried out. Thus, force transmissibility of the 
system was obtained. The simulations showed that the designed system had the quasi-zero-stiffness 
characteristics at long range, good vibration isolation performance and could solve the inherent 
contradictions between the low-and-ultralow frequency vibration isolation and system stiffness. 

Introduction 

According to vibration theory, the frequency of traditional passive vibration isolations 
attenuating external disturbance is 2  times more than their natural frequency [1]. For achieving 
vibration isolation of low-and-ultralow frequency within the scope from 0.5 HZ to 70 HZ, these 
apparatuses only reduce their natural frequency. However, reducing the natural frequency means 
sacrificing the system stiffness [2]. The small system stiffness will contribute to increasing the static 
deflection of elastic components and decreasing the load bearing capacity. With the in-depth study, 
the isolation system with quasi-zero-stiffness characteristic turns out to possess excellent 
performance. The isolation system can obtain low dynamic stiffness without sacrificing static 
stiffness [3, 4]. There are several kinds of typical quasi-zero-stiffness structure described as 
following. The authors in [5] achieved the low frequency vibration isolation basing on an apparatus 
composed by a magnet and a spring. In [6] the authors took advantage of negative stiffness 
characteristics the beam under axial load bent in the longitudinal direction demonstrate and 
designed an apparatus with quasi-zero-stiffness. In [7] the authors designed a quasi-zero-stiffness 
structure assembled via parameter optimization by three linear or nonlinear springs, and conducted 
a series of static and dynamic analysis. However, the above several models can only realize 
quasi-zero-stiffness under the particular quality. In order to meet the demand for vibration isolation 
when the quality of the object varies, this paper puts forward a novel vibration isolation platform 
possessing adjustable quasi-zero-stiffness. As a kind of passive vibration isolation system, this 
scheme can not only reduce production cost and improve system reliability, but also solve the 
inherent conflict between the low-and-ultralow frequency vibration isolation and system stiffness.  

Design of Vibration Isolation System 

In this paper, the vibration isolation system with quasi-zero-stiffness shown in Fig. 1 (a) consists 
of horizontal thrust spring-7, bearing spring-8, workbench-3 and foundation-1. Rotating shaft-5 via 
cylindrical pin-6 is installed on the foundation-1 and is inscribed in the circular surface of 
workbench-3. The horizontal thrust spring-7 is installed in spring mounting hole on the 
foundation-1. The initial thrust is controlled by thrust regulator-2—adjusts the initial amount of 
compression of the horizontal thrust spring-7. The workbench-3 is simultaneously forced by the 
horizontal thrust spring-7 and the bearing spring-8. 
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(a) Three-dimensional model of the system (b) Schematic of the system 
1-Foundation; 2-Thrust regulator; 3-Workbench; 4-Vibration isolation object; 5-Rotating shaft; 

6-Cylindrical pin; 7-Horizontal thrust spring; 8-Bearing spring. 
Fig. 1 Vibration isolation platform with quasi-zero-stiffness. 

Static Analysis of the Proposed Design  

When the workbench has no load, Fig. 1 (b) shows the relative location between the circle O1 
and the circle O2. Under the action of static force, the workbench moves downward vertically. The 
variable x is defined as the displacement deviating from the static equilibrium position shown in Fig. 
1 (a). 

Hypothetically, the term F(x) in Fig. 1 (b) is static force. Surppose that it is equal to F, the 
general equation relating the force F to the displacement x in the vertical direction can be expressed 
as: 

2 tanv sF k x k x                      (1) 
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Where, the term θ in (1) is the included angle between line linking centers of the inscribed circle 
and central axis of the horizontal thrust spring; the term x denotes amount of deformation of the 
horizontal thrust spring when the workbench moves nearby the equilibrium position; the term kv 
denotes the stiffness of the bearing spring; the term ks denotes the stiffness of the horizontal thrust 
spring; the term a denotes the initial amount of compression of the horizontal thrust spring, which is 
adjusted by the mass that the workbench is loaded. 

Then, (1) can be expressed as follows: 
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For clarity of analysis, the nondimensional equation rewrited from (2) whose both sides are 

simultaneously divided by kvr is introduced as follows. All parameters in (3) are nondimensional. 
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Eq. (3) is the expression without dimension of the force to the displacementy. To obtain stiffness 
formula without nondimension of the system, we take derivative of (3) with respect to x̂ . The 
nondimensional stiffness formula is shown in (4). 

 

257



 

2

2 2 3/2

ˆ ˆˆ ( 1) ( 1)
ˆ 1 2 (1 )

ˆ ˆ(( 1) )

a R R
k

R x


      
 

                (4) 

To achieve the characteristic of zero stiffness, k̂ must be equal to 0 when x̂ is equal to 0. Thus, (5) 
can be achieved through Eq. (4). 
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                     (5) 

When the novel platform possesses quasi-zero-stiffness, Eq. (5) denontes the relationship needed 
to meet among design parameters—such as stiffness ratio λ, the initial amount of compression and 
radius ratio R̂ . 

In order to avoid the phenomenon of negative stiffness, the equilibrium position should locate 
the minimum point of stiffness. So we take derivative of (4) with respect to x̂ . 
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Then by substituting zero for x̂ , we can easily derive k̂  is equal to zero. Eq. (6) denotes that the 
proposed design not only possesses reliable quasi-zero-stiffness, but also avoids passive stiffness.  

Suppose that stiffness ratio λ=3, radius ratio R̂ , and the initial amount of compression ˆ=0.5a , and 
solving (3) and (4) by Matlab, we can derive the nondimensional force-to-displacement curve and 
the nondimensional stiffness-to-displacement curve of this case. When the displacement of up-down 
vibration is within -0.5 to +0.5, Fig. 2 and Fig. 3 respectively shows that the isolator proposed in 
this paper possesses raliable quasi-zero-stiffness characteristic and simultaneously illustrates that 
the isolator is a stable system. 

 

x̂

F̂

x̂

k̂

Fig. 2 Force-to-displacement curve. Fig. 3 Stiffness-to-displacement curve. 

Dynamic Analysis of the Platform 

Approximate Substitute for Restoring Force. In order to facilitate the discussion of dynamic 
properties of the platform, it is necessary to simplify the mathematical model. The 
force-to-displacement curve in Fig. 2 indicates that it is feasible to analogously substitute a cubic 
polynomial for the elastic restoring force of the system. By Taylor series expansion, and ignoring 
higher-order terms, we can derive a cubic polynomial which analogously substitutes the elastic 
restoring force of the proposed design. 

Taylor series expansion in ˆ 0x  can be expressed as: 
 

2 3
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Thus, the approximate expression of force-to-displacement can be expressed as: 
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Under the conditions ˆ ˆˆ (0)=0 (0)=0 (0)=0F k k， ， , Eq. (9) can be achieved. 

258



 

 
3 3

3

ˆ ˆ ˆ(0) (( 1) )ˆ ˆ ˆ
ˆ3! ( 1)

k R a
F x x

R

  
 


 (9) 

Eq. (9) is the reduced force-to-displacement equation of the system. 
Fig. 4 displays the error between approximate solution and exact solution of 

force-to-displacemen. Fig. 5 shows the error between approximate stiffness and exact stiffness of 
the stiffness-to-displacemen. In the range of small vibration amplitudes nearby the equilibrium 
position ˆ=0x shown in Fig. 4, the approximate curve coincides with the accurate curve well. So 
analogously substituting the cubic polynomial for the elastic restoring force is feasible within the 
range of small vibration amplitudes nearby the equilibrium position.  

Fig. 4 Comparation between approximate force 
and accurate force. 

Fig. 5 Comparation between approximate 
stiffness and accurate stiffness. 

 
Performance Analysis of the Vibration Isolation System. For linear vibration system, force 
transmissibility is often applied in studying vibration chracteristics of this kind of isolator. For this 
isolator with quasi-zero-stiffness characteristic, force transmissibility can be also suitable for 
analyzing its performance characteristic. Fig. 6 is schematic diagram of the dynamic model. 

 
Fig. 6 Schematic diagram of the dynamic model. Fig. 7 Frequency-amplitude for ˆ0.02, 0.05F  

 
Under the influence of harmonic exciting force and damping, the nondimensional motion equation 
of force-to-displacement can be derived by substituting the appraximate cubic polynomial for the 
elastic restoring force. Actually the motion equation is Duffing equation without linear term. 
 3ˆ ˆ ˆˆ2 cosx x x F        (10) 

where, 2 0
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Suppose that solution of (10) is equal to ˆ( ) sin( )x A     . Harmonic balance method is applied 
to solve the motion equations of the nonlinear system. The coefficients of the same cosines and 
sines on both sides of (10) must be equal and ignoring high-order harmonic and eliminating phase. 
The frequency–amplitude formulation of displacement response to fundamental harmonic 
consequently can be derived, which is shown in (11).  
 3 2 2 2 23 ˆ( ) (2 )

4
A A A F       (11) 
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In (11), A is the response amplitude of the system; Ω is the frequency of the harmonic excitation. Eq. 
(11) describes the relationship between the response amplitude A and damping ratio ζ, stiffness ratio 
γ, and excitation condition, including the amplitude of the exciting force and exciting frequency. 

From
3

ˆ ˆ(( 1) )
ˆ( 1)

R a

R

  



, it can be discovered that the relationship between the response amplitude A 

and stiffness ratio γ depends on system parameters such as radius ratio R̂ . With the increase of 
radius ratio R̂ , stiffness ratio decreases. Fig. 7 shows the influnce of radius ratio R̂ on the 
frequency–amplitude characteristics. As is shown in the graph, with the increase of radius ratio R̂ , 
the jump-up frequency Ωd and jump-down frequency Ωu decreases, respectively.  
Multiple solutions, namely the jumping frequency domain, appear in the curves of 
frequency-amplitude characteristic, because of the influence of nonlinear phenomenon. 
Hypothetically, the constant amplitude of exciting force, as the exciting frequency changes from 
low to high, vibration amplitude A along the green curve goes through the point 2 after passing 1 to 
reach the maximum point 3. If the exciting frequency still increases, vibration amplitude A abruptly 
jumps down to the point 4 from the maximum point 3 and finally reaches the point 5 along the 
green curve. On the contray, as the exciting frequency changes from high to low, amplitude A along 
the blue curve goes through the point 4 after passing 5 to reach the point 6. If the exciting frequency 
still decreases, vibration amplitude A abruptly jumps to the point 2 in the upper branch from the 
point 6 and finally reaches the point 1 along the blue curve. 

Suppose that ,te tdf f is respectively the elastic force and damping force. The force t̂F transmitted to 

the base from the vibration isolation can be expressed as: 
 2 2

t̂ te tdF f f   (12) 

The amplitude t̂F of the force transmitted to the base can be expressed as: 

 
3 2 23ˆ ( ) (2 )

4tF A A     (13) 

Eq. (13) denotes the relationship between the amplitude t̂F of the force t̂F and damping ratio ζ, 

stiffness ratio γ, and excitation condition. 
So force transmissibility is expressed as: 
 3 2 23

( ) (2 )ˆ
4 .

ˆ ˆ
t

A AF
T

F F

  
   (14) 

Eq. (14) denotes that force transmissibility of the quasic-zero-stiffness system depends on the size 
of damping ratio ζ and the amplitude of exciting force. 
Based on (14), the dynamic response of the isolator with respect to ratio ζ can be investigated. 
Figure 8 shows the influence of the ratio ζ on force transmissibility. The larger values of ζ the larger 
isolation range will be achieved. More specifically, according to Fig. 8, when ζ=0.01, the curve 
obviously bends to the right and marked jumping phenomenon occurs, which leads to the increase 
of the initial frequency to the vibration isolation and attenuation of the effect of the vibration effect. 
When ζ=0.02, jumping phenomenon becomes attenuated and the transmissibility is under 15 
percent, especially the peak transmissibility is reduced markedly campared with that of ζ=0.01. 
When ζ=0.03, jumping phenomenon disappears thoroughly and the transmissibility is under 5 
percent. And the initial frequency is the lowest among the three values of the ratio ζ. 
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u d

Fig. 8 Influence of ζ on force transmissibility 
for ˆ 0.05, 5 /18tF    

Fig. 9 Influence of exciting force amplitude on 
transmissibility for ζ=0.05, γ=5/18. 

In the jumping frequency domain, namely d u     , the vibration isolator becomes two-state 
system. The upper branch and the lower branch are steady-state, while the middle branch is not 
steady-state. The jump-down frequency Ωd the jump-up frequency Ωu is the bifurcation point of the 
frequency response. To achieve available attenuation and broaden the frequency range of effective 
isolation, the jump-down frequency Ωd need to be decreased, as is shown in Fig. 9. As Fig. 9 shows, 
the relationship between the jump-up-and-down frequency and the amplitude of exciting force is 
direct proportion. As the blue curve shows in Fig. 9, the larger exciting force amplitude means the 
higher the jump-up-and-down frequency. Meanwhile, the peak transmissibility T1 corresponding to 
the largest exciting force amplitude is the highest compared with T2 and T3. Moreover, the 
frequency range of effective isolation is the narrowest because of increasing of the exciting force 
amplitude. Therefore, in order to achieve better effect of vibration isolation, we should select 
smaller amplitude of the exciting force. 

Conclusion 

This paper designs a novel mechanical adjustable isolator with quasi zero stiffness, obtains the 
condition the proposed system parameters should satisfy and analyzes the characteristics of system 
dynamics and the performance of vibration isolation. The following conclusions can be achieved 
through calculation and analysis. 1) The proposed vibration isolation system possesses simple 
structure, easy manufacturing and high static stiffness; 2) Distinguished from the common ones, 
when the bearing load changes, the proposed vibration isolation system can still maintain the zero 
stiffness characteristics nearby the static equilibrium position through adjusting thrust regulator; 3) 
Nearby the equilibrium position, the vibration isolation system can have excellent performance of 
vibration isolation under the small excitation amplitude, which is very suitable for vibration 
isolation with low and ultralow frequency. 
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