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Abstract. Recently, quantifying the complexity of the physiological time series has become more 
and more concerned. As one of the most complex physiological signals, electroencephalogram 
(EEG) including a large number of physiological and pathological information attracts widespread 
interest. However, many traditional algorithms fail to account for the multiple times scales inherent 
in physiologic dynamics. In this paper, we proposed multiscale relative transition entropy algorithm 
(MRTE) to analyze the white noise and pink noise, the adolescent and adults EEG as well as normal 
and epileptic EEG. The results indicate that there are distinct tendency among different types EEG 
which indicating that the multiscale relative transition entropy can distinguish different 
physiological and pathological signals.  

1. Introduction 
The EEG signal is generated by the activities of brain and is a spontaneous electrical activity 

always existed in the central nervous systems, which is an important bioelectric signal[1]. In clinical 
diagnosis, as EEG contains a large number of physiological and pathological information, the 
deeply research on it can bring lots of benefits: the reliability and accuracy of diagnosis and 
detection in the brain lesions will be improved. At the same time, the research will also provide an 
effective means of the diagnosis among brain diseases. 

Caused by any neurological disease of the brain, such as cerebrovascular disease, migraine, 
epileptic and so on, changes in terms of brain structure and function can lead to the abnormalities of 
EEG. As a result, the analysis processing and feature extraction of EEG will be important in the 
identification of brain disease, the prediction and prevention of pathological states. 

Entropy is a parameter to measure the chaos degree of system with a more special definition in 
different fields and in life sciences, it means disorder life activities. In order to get a comprehensive 
study of complexity of EEG, this paper adopts a toll, called relative transition entropy ( rH )[2-3], 
akin to the symbolic transfer entropy which integrated the concept of transfer entropy and relative 
entropy[4-6]. This algorithm calculates the relative entropy by the transfer probabilities between the 
forward sequence and the reverse sequence which leads to obtain the degree of irreversible 
process[7-8]. 

2. Theory of multiscale relative transition entropy 
The purpose of this paper is to apply a general approach to take into account the multiple time 

scales[9-11] in EEG signals with the relative transition entropy. In different scales, the paper 
showed the distinction of the relative transition entropy among different types of EEG signals. At 
the same time, the appropriate scale can be more beneficial to the analysis of illness which can play 
a positive and important role to further improve the effect of the clinical diagnosis. We study 
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simulated noises as well as human EEG signals, the latter representing the output of an important 
physiologic system. 

Giving a one-dimensional discrete time series, }1:)({ Niix ≤≤ , for a fixed scale factor τ, we 

construct consecutive coarse-gained time series,{ })(τy , with the equation,  
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The length of each coarse-gained time series depends on the scale factor, τ . Here we consider 
time series with 5040 points and coarse-grain temp up to scale 10, so that the shortest time series 
has 504 points. Then, for each coarse-gained time series, calculating a relative transition entropy as 
a function of the scale factor τ . 

Regarding the new coarse sequences as participants, we map the sequences into symbolic strings. 
For original time series, the symbolic map[12-13]  can be introduced as follows:  
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Where i is the index of series, with i=1,2,...,N. The time series Nxxxx ,...,,, 321  is transformed 

into the symbol sequence Nssss ,...,,, 321 , Α∈is on the basis of the alphabet }3,2,1,0{=Α . The 
transformation into symbols refers to three given levels where 1µ  denotes the mean of all series 
that greater than zero while 2µ  denotes the mean of all series that less than zero. The parameter 
α [14] is a special parameter that we have chosen 0.05. Symbolization is a coarse-grained process. 
Some detailed information is lost in this process, but the coarse dynamic behavior can be analyzed. 

For the new symbol sequence, rH [2]needs to be calculated: 
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  Where t
ntx − = tntnt xxx ,...,, 1+−− , t

mty − = tntnt yyy ,...,, 1+−− , t
ntx −  refers to the forward sequence while 

t
mty − are the reverse sequence. Change the scales can get different rH . 

3. Results 
With the above algorithms, we proceed to analyze the advantage of the multiscale relative 

transition entropy compared to the conventional method for the EEG signals, white noise and pink 
noise. There are two types of the EEG signals.One of them is from adolescence and adult, the other 
is EEG from normal subjects and epilepsy patients. Both of the data are recorded at Nanjing 
General Hospital of Nanjing Military Command.For these two kinds of signals, the length of each 
one is over one minute and the sampling frequency is 512 Hz as well as contains 16 lead signals. As 
c3 signal has better discrimination in scale 1, so we chose c3 lead signals as research object. 

We first test this method on simulated white and pink noises. The relationship between scale 
factor and entropy of these noises, is, respectively, plotted in fig. 1. As shown in fig. 1, for every 
scale, the relative transition entropy of pink noises is higher than the white noises. However, while 
the entropy value for the coarse-gained 1/f series slowly decreases for all scales, the entropy value 
for the coarse-gained white noise time series ascends sluggishly. This result is consistent with the 
fact that, unlike white noise, 1/f noise is closer to the body’s physiological signals with higher 
complexity. Actually, an entropy value of a signal is generally higher than the other among the most 
scale, indicating it’s higher complexity. 
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Fig.1: The analysis of Gaussian distributed white noise and 1/f noise. The total length of the original 

series is 5040 points. 
 

In order to further analyze the properties of the multiply scales for relative transition entropy, we 
applied the method to the selected physiologic time series (Fig. 2). The overall trend of the two 
signals is consistent and they reach the maximum at the scale 2 and the scale 3. When r<3, the 
entropy of the adult is higher than the adolescent, which indicating the adult EEG shows higher 
activity. For among the data in this experiment, the average age of adult objects is about 35 while 
the adolescent is about 18, so the adult brain is in the most active period. While it becomes contrary 
as r>3, which states that adolescents EEG shows higher activity, and both complexity are reduced. 
If scale in multiscale process is bigger, the obtained sequences more reflect the low frequency 
components in the signal. the EEG often include δ wave whose frequency is between 1 and 3.5Hz、θ 
wave whose frequency is between 4 and 7 Hz、α wave whose frequency is between 8 and 13 Hz、β 
wave whose frequency is between 13and 30 Hz.Somebody who is in infancy or intellectual 
development is not mature and δ wave is at higher weights, while α wave is the basic rhythms of 
EEG of normal adults. The larger scale means the lower frequency with the higher probability of δ 
wave. So the adolescents show higher relative transition entropy than the adults in large scale. 
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Fig.2: the associated sequences are eight subjects: four adolescent subjects and four adult subjects. 
The total length of the original series is 5040 points. adurH--->adult rH, adorH--->adolescence rH. 

 
Last, we proceed to compare the relative transition entropies of the heathy subjects with the 

patients. From the Fig.3 we can draw a conclusion that for the scale one, the relative transition 
entropies of the healthy subjects are significantly higher than the patients (by t test, T value =2.361, 
P=0.03, as under the P<0.05 level).The relative transition entropy value is lower means 
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self-similarity of the sequence is higher and the sequence is more simple. With the increase of the 
scale, r, two kinds of the entropy are tended to first increased and then decreased, with respect to the 
scale one, the discrimination has been greatly improved. For normal subjects, α waveform is at 
bigger weights, while δ and θ waves are at bigger weights of the epilepsy. The larger scale indicates 
the lower resampling frequency. The δ and θ waves frequency are lower than the α wave, so the 
epilepsy patients show higher relative transition entropy than the normal subjects in large scale. 
When r is between 2 and 3, the two kinds subjects’ entropy values are almost equal. At this moment, 
it is obvious that the two signals can not be distinguished. So there are apparent advantages of 
multiscale process, it can greatly improve the discrimination among the different EEG signals but 
choose the adaptive scale is more important. 
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Fig.3: the associated sequences are twenty subjects: ten normal subjects and ten epileptic subjects. 

The total length of the original series is 5040 points. 

4.  Conclusion 

In order to obtain better dynamic characteristics, we present the multiscale method based on the 
relative transition entropy. Complex dynamics typically reveal structure on multiple spatial and 
temporal scales, these multiscale features, ignored by conventional entropy methods, are explicitly 
addressed in the multiscale algorithm. For different signals, as the scale changes, the entropy will 
change too. From the above experiments, we know that applying this new method to the clinical 
medical detection has an important significance and this method can also be used to apply to other 
areas. 
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