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Abstract: Compared with the conventional adaptive spatial filter algorithm, blind beamingforming 
algorithm is endowed with the capacity to protect desired signal, suppress interferences and reduce noise 
without the information about arrival direction of desired signal, thus leading to the wide application in 
many fields. In previous studies, the background noise was assumed to be gaussian noise distributed. In 
case the ambient noise is non-gaoussian noise, the performance of classic blind beamforming algorithm 
known as spectral self-coherent restoral method would experience a rapid deterioration. Based on the 
fractional lower order matrix and robust estimation theory, this paper provides a solution to the problem of 
blind adaptive beamforming inα stable noise environment, and the proposed method can be verified by the 
simulation results.  

INTRODUCTION 
   With the rapid development of adaptive filter theory and algorithm, the adaptive filter technology has 
achieved an extensive application with increasing attention in recent decades [1-2]. It has been widely used 
in radar, seismology, radio astronomy, medical imaging, speech processing and wireless communications 
[3-5]. Through in-depth studying, researchers put forward a great deal of non-blind or blind adaptive 
beamforming algorithms, such as maximum signal-to-noise ratio beamforming, minimun noise power 
beamshaper, and minimum variance distortionless response [6]. Called non-blind adaptive beamforming 
algorithms, these algorithms require the knowledge of directions of the desired signal or training 
information, while the blind adaptive beamforming takes advantage of the cyclostationarity of signals to 
restore the desired signal. As for the performance of classic blind beamforming algorithm known as the 
spectral self-coherent restoral (SCORE) method, it retains consistence with the performance of MVDR 
algorithm when the number of snapshots goes to infinity. Moreover, it should be noted that SCORE 
algorithm is put forward based on the assumption of gaussian noise. However, this kind of assumption is 
rarely good enough owing to the interference of wireless channels, atmospheric, and receiver in a real life 
situation. Unfortunately, due to the divergent sample correlation matrix under the condition of the 
non-gaussian noise, the performance of conventional SCORE algorithm has experienced a sharp decline.  
    To suppress non-gaussian noise, a method based on fractional lower order matrix in [7] is proposed 
for non-blind beamforming technique. In this paper, a novel approach is proposed to suppress theα stable 
noise for restoring the performance of SCORE algorithm. Main contributions of this paper are listed as 
follows:(1)Fractional lower order matrix is extended from non-blind beamforming [7] to blind 
beamforming.(2)Besides fractional lower order matrix, M-estimate function is also used in the proposed 
method for mitigating non-gaussian noise. 
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BACKGROUND KNOWLEDGE 
I.Conventional SCORE Algorithm 

It is assumed that there is a uniform linear array with M sensors receiving N narrow-band signals 
containing one desired signal and N-1 interference signals emitted from the far field. The 1×M  vector of 
receiving signal can be represented as: 

kkk nsax += )(θ                                 (1)   
where k is the sampling time, ks  is the desired signal and interference from respective direction angle θ , 
( )θa  is a 1×M  steering vector at direction angle θ , and kn is the 1×M  vector of noise ( gaussian or 

non-gaussian ). Through solving the optimal or suboptimal weight vector w  without knowing priori 
information about any relevant desired signals or interference, we can obtain the desired signal ks from 
receiving signal kx by SCORE algorithm. The output of the beamforming is given by: 

xwy H=                                   (2) 
  The cost function of SCORE algorithm can be written as: 
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which k is the number of snapshots, and c means the referent vector.  
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II.The characteristics of α stable distribution 

The definition of α stable noise model based on characteristic function is given by: 
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where α  is features exponent, which determines the extent of noise. β  is symmetry parameter, which 
determines the degree of distorted distribution. Moreover, γ  is scale parameter, which determines the 
degree of stable variable deviated from the mean, and μ  is positional parameter which reflects the offset of 
probability density function in X-axis.  

The statistic matrix of signal contains wealth of information about the characteristics of signal. For the 
conventional methods, typically second-order matrix or high-order matrix is utilized. If the signal or the 
noise characteristic index satisfies O<α <2, its higher-order statistics and second-order statistics would not 
exist, with α  stable noise being one of the representatives. 

The second-order matrix of random variable X is typically defined as [ ]2XE . For theα stable 
distribution random variable, there is only the existence of fractional order matrix, which can be 
represented by the following formulas: 

If 0 2α< < , then:   ,pE X p α  = ∞ ≥      , 0pE X p α  < ∞ ≤ <                 (5) 

 If 2α = , then:    , 0pE X p  < ∞ ≥                                   (6) 
    In this case, it can be seen from formula (3) that the SCORE algorithm based on higher-order statistics 
or second-order statistics cannot work effectively. Moreover, there would be the emergence of obvious 
deterioration, which even leads to erroneous results. Thus, the fractional lower order matrix (FLOM) or 
fractional lower order statistics (FLOS) has become an important way of signal processing under the 
condition of signal or noise with non-gaussian noise stable distribution.  
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ROBUST SCORE BEAMINGFORMING ALGORITHM 
    Before the use of the fractional lower order matrix to improve the algorithm, in this paper, the 
following method is employed to process the received signal. 
    An M-estimate function is chosen as follows: 
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where β  is the cutoff value; when the received signal influenced by α stable noise is much larger than 
other sampling value (also larger than the cutoff value β ), ( )ρ •  would limit the effect of α stable noise.  

The choice of the cutoff value β  in (7) plays an important role in the performance of the robust channel 

estimator. It can be seen from (1) that the kn is α stable noise. The probability of nz greater than the 

cutoff value β  is given by: 

{ } ( )( )/ 2n zP z erfcθ β β σ= > =                              (8) 

where zσ  is the estimate standard deviation of the “impulsive free” error, and 
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is the complementary error function. For the given percentages of impulsive noise Pr( 1)nb p= = , the value 
of β  can be determined with the formula (8).However, the probability of impulsive noise is generally 
unknown in realistic situation. Therefore, a robust method has to be developed to estimate β .  It can be 
seen from (8) that β  depends on θ  and zσ , the effect of which can be described by the median absolute 
deviation from the median of nz  

( ){ }n ns Med z Med z= −                               (10) 

 Thus, the cutoff value β  can be approximately determined by 

sN=β                                     (11) 

the fractional lower order moment(FLOM) has been successfully applied in MVDR algorithm[7]，It is 
defined as: 

( ) ( )[ ]
( ) ( ) ( )[ ]

k

Hp

k

pH
FLOM

kkk

kk

ττ

τ

++=

+=

−

−

xxx

xxR

sgn1

1

                            (12) 

Easy to see from the above formula,due to the non -symmetry of ( )p
xxR ,the SCORE algorithm has poor 

performance. In particular,when 1<α ,the algorithm fails.Therefore, this paper takes the following 
approach: 
    Complex random variables X is defined as follows: 

p 1 p 1

p
,0 p 1px x x x− −= = ≤ ≤                           (13) 

    For L dimensional vector x, it can be defined as: 
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L

p
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    By converting x into polar form, we can get jθrex = . Similarly, there is jθerx pp = . Compared with the 
former, px ( )2/α<p  just changes the information about amplitude, while the information about phase 
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remains unchanged. In this paper, under the condition of stable distribution, the fractional lower order 
matrix and fractional lower order cyclic matrix are applied to the SCORE algorithm. 

The fractional lower order covariance(FLOC) is: 
( )( ) ( ) ( )[ ]

( ) ( )[ ]τ

ττ

p
ux

k

p
H2

p
p

ji
R

kk

=

+= 2uxRxu                                 (15)    

where ( ) ( ) ( ) ( )1 2, , ,
T

Lk k k k=   x x x x , ( ) ( ) ( ) ( )1 2, , ,
T

Lk u k u k u k=   u  , both of them are vectors of length L, k  is the 
average of time, p is the fractional lower order parameter, α<< p0 . 
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    Similarly, the proprosed the fractional lower order cyclic covariance (FLOCC) is shown as: 
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where ε  represents the cycle frequency, τ represents the time delay, the element of ith row and jth 
column in the matrix is: 
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  From formula(5),we can know when α<< p0 , ( )( ) ∞<τp
uxR .Because of 12 =− kje πε , ( )( ) ∞<τε ;p

xuR Therefore, we can 
rewrite the formula (3) by using equation (15) and equation (17) : 
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where ( ) ( )τ+= kk *xu  is the new referent signal. 
( )( ) ( ) ( )[ ]

k

kj2
p

H
p

p ekk πεττε 22; −+= uxRxu
( )( ) ( ) ( )[ ]

k

p
H

p
p kk 22 ττ += xxRxx , ( )( ) ( ) ( )[ ]

k

2
p

H
p

p kk ττ += uuRuu 2  
( )( )τε ;p
xuR  is the fractional lower order cyclic (FLOC) conjugate auto-correlation matrices about ( )kx . In 

addition, the ( )p
xxR  is the fractional lower order covariance(FLOC)  about ( )kx . ( ) ( )pp
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matrix about ( )k*x . 
   It can easily be proved that equation (19) is equivalent to the following: 
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where γ  is Lagrange multiplier  parameters. We can set ( ), 0J∇ =w w c , ( ), 0J∇ =c w c  and minimize the 
cost function ( ),J w c : 
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Formula (21) can be further deduced: 

 ( ) ( ) ( ) ( ) ( ) ( )cRwwRRc xuxuuu τετετγ ;;
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Substituting (22) into (21), gives: 
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From (23), weight vector w  can be calculated as the eigenvector corresponding to the largest 
singular values of the following formula: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )τεττετ ;; 11 Hpppp
xuuuxuxx RRRR −−                        (24)  

Simulation Results 
A uniform linear array containing 10 half-wavelength spaced sensors is considered in the simulation. 

Without considering the effects of multipath, the direction of arrival of one desired signal and three 
interferences are 0o and -30o, 30o, 70o, respectively. The signal-to-interference ratio (SIR) is set to -20dB 
and the signal-to-noise ratio (SNR) is set to be 10dB. Besides, both desired signal and interference are 
modulated with binary-phase-shift-keying owning half cosine pulse shape. The sampling frequency is set 
to 1. The baud rates for the desired signal and interference are 1/5, 1/7, 1/8, and 1/9 respectively while they 
share the same carrier frequency 0.25. In this case, τ=0 and α=1/5. In the first three pieces of the figures, 
the number of sampling snapshots is 1500. It is assumed that the power of desired signal is 1. Hence, the 
power of noise and interference can be calculated by: 
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If α  stable noise exist in the receiving signal, 2.1=p , 6.1=α , 1=γ , other parameters are set to 
0. 

 

Fig. 1 beam patterns for traditional SCORE        Fig. 2 beam patterns for the proposed 

 

         Fig. 3 SINR versus SNRs             Fig. 4 SINR versus the number of snapshots 
Fig. 1 illustrates the comparisons of the normalized beam patterns for traditional SCORE algorithm 

between gaussian white noise and α stable noise. It can be seen that in gaussian white noise environment, 
the traditional method will achieve an excellent performance while in α  stable noise environment, it 
loses the ability to restore the desired signal and restrain the interference.  

Fig.2 shows the simulation results of the proposed method through the employment of fractional 
lower order matrix in α  stable noise environment. The proposed method not only provides a mean of 
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interference suppression by forming deeper nulls in the direction of interference, but also achieves the 
highest array gains in the direction of desired signal. 

In Fig.3 and Fig.4, we assume there are two interferences with sir=-20dB. The former presents the 
SINRs with different SNRs for K=1500. It is observed that the proposed method performs much better than 
the traditional method in α stable noise environment. Despite of the low SNR condition, the proposed 
method performs slightly worse due to the influence of the algorithm itself, while in comparison, the 
proposed method perform better in higher SNR with the increasing of SNR. Fig.4 shows the effect of the 
number of snapshots on the SINRs, from which it can be seen that the SINR obtained with the proposed 
method is much higher than the other with α stable noise.    

Conclusions 
In terms of the conventional SCORE algorithm, second-order matrix has been utilized to suppress 

interference and noise. However, if the characteristic index about signal or noise satisfies O<α <2, such 
asα stable noise, there will not be the existence of second-order statistics or higher-order statistics.In this 
case, the conventional SCORE algorithm may suffer sharp deterioration in performance. To maintain the 
performance of SCORE algorithm, this paper proposes a method on the basis of robust estimation theory 
and fractional lower order matrix. Compared with other methods[7-8], the proposed method improve the 
robustness of the SCORE algorithm and is suitable for strong impulse noise, the correctness of which has 
been proved by the simulating results. 
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