

Hybrid Log-based Fault Tolerant scheme for Mobile Computing System
Yongning Zhai1, a, Zhenpeng Xu1, b, Weini Zeng1, c

1Jiangsu Automation Research Institute, Lianyungang, Jiangsu, 222061, China
aemail: xingyuant@126.com, bemail:xuzhenpeng@jari.cn, cemail:zengweini@jari.cn

Keywords: Mobile System, Fault Tolerant, Checkpoint, Message Log

Abstract. Many new characteristics are introduced in the mobile computing system, such as
mobility, disconnections, finite power source, vulnerable to physical damage, lack of stable storage.
Since the related log-based rollback recovery fault tolerant schemes may still lead to dramatic
performance loss in failure-free or inconsistent recovery caused by the fault, a hybrid log-based
fault tolerant scheme was proposed combining the checkpointing mechanism with the message
logging mechanism in this paper. The checkpoint, the logs and the happened-before relations were
all logged synchronously at local mobile hosts temporarily and asynchronously into the persistent
storage at mobile support station. By contrast, the proposal incurred a lower failure-free overhead
on the premise of the consistent recoverability, as the consistent recovery was supported.

Introduction
In Checkpointing and rollback-recovery schemes, each of the replicated state of the process is

called a checkpoint [1-2]. Upon a fault, there is a recovery mechanism which brings the failure
process to the normal execution [3-5]. The log-based rollback recovery schemes based on
independent checkpointing, is preferable for fault tolerance of mobile computing [6]. Depending on
how the determinants are logged to stable storage, log-based rollback recovery scheme is classified
into three types: pessimistic logging, optimistic logging and causal logging [7].

In pessimistic schemes, the process has to block waiting for the determinant of each
nondeterministic event to be stored on stable storage before the effects of that event can be seen by
other processes or the outside world. Pessimistic logging simplifies recovery and garbage collection
but hurts failure-free performance due to synchronous logging [8]. In optimistic schemes, the
process does not block, and determinants are transferred to stable storage asynchronously [9]. Thus,
optimistic logging does not require the application to block waiting for the determinants to be
actually written to stable storage and only record the nondeterministic event, and therefore incurs
little overhead during failure-free execution. However, this advantage comes at the expense of more
complicated recovery, garbage collection and propagated rollback. In case of some loss of
temporary logs, it may lead to unrecoverable rollback without well consideration of the input/output
commit problem, as the input/output devices that cannot roll back. Causal schemes satisfy
always-no-orphans property by ensuring that the determinant of each nondeterministic event that
causally precedes the state of a process is either stable or it is available locally to that process.
Therefore, it gets a balance between optimistic and pessimistic logging to maintain the dependency
relations through each common computing message [10]. However, many records of the
dependency relations require to be exchanged among the process. As a result, carrying the
dependency relation graph information on each application message may lead to an unacceptable
overhead, since each MH corresponds to one antecedence graph.

As shown in Figure 1, new characteristics are introduced in mobile computing, such as mobility,
disconnections, finite power source, vulnerable to physical damage, lack of stable storage [6].
Mobile computing system, MCS=〈N, C〉contains a set of nodes N and a set of channels C. The set
of nodes N=M∪S can be divided into two types, M={MH1, MH2,..., MHn} is the set of Mobile
Hosts (MH), while S={MSS1, MSS2,..., MSSm} is the set of static nodes acting as the access point
with extra processing power and storage capabilities, static backbone node[7]. The set of channels
C=W∪W' can also be divided into two disjoint sets, the set of high-speed wired channels W and the

2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016)

© 2016. The authors - Published by Atlantis Press 766

set of low bandwidth wireless channels W'. All the channels W and W' provide reliable, sequenced
FIFO delivery of messages[6]. For simplicity, only one process running on a MH is assumed. These
distributed processes communicate each other only through exchanging computational messages,
and interact with the outside world only through input/output commit [7]. The execution of the
process is assumed to follow Piece-wise Deterministic (PWD) model, and the transient fault of the
process follows fail-stop model [7].

Fig.1. Mobile computing system

The Hybrid Logging Scheme
In our model, ‘Deterministic’ indicates that event e is not a nondeterministic event. The deliver

sequence number, e.dsn encodes the order in which e is delivered by the computing process. Thus,
if process Pi has delivered e and e.dsn =θ , then e is the θth event that Pi has delivered. For
simplicity, we refer to #e the determinant of e. This tuple #e determines event e and related
information, which is useful for the rollback recovery phase.

To record the process state(experienced events) and happened-before relation exactly, the
antecedence graph is introduced based on the state transition advanced by the nondeterministic
event. Each MSS maintains only one antecedence graph for all the MHs in the local cell to support
the possible rollback recovery. The antecedence graph contains a summary of the local cell’s
execution. The antecedence graph AG =<E, V>, contains the node set V including the logged
determinant of the event experienced by each computing process, and the edge set E representing
happened-before relations among the nodes in V.

Specifically, in the antecedence graph, each node σ corresponds to one logged event
determinants #e (#e=σ∈V). Let σθ

i indicates the θth node of Pi in the antecedence graph.
Only one entire antecedence graph of all the local MHs is managed and maintained by MSS.

Locally, Each MHi only maintains a temporary event logging queue EQi, to record all the events
experienced by the local computing process Pi. Furthermore, the content of the checkpoint and
message logs are also recorded in the graph node set V, in addition to the happened-before relations
recorded in the edge set E. That means no dependency relations require to be exchanged among
mobile hosts during failure-free execution.

Each MHi manages and maintains a temporary version event logging queue EQi, to record all
the events experienced by the local computing process Pi, including message-sending,
message-receipt, input, output and the checkpointing event.

For checkpointing, the local checkpointable interface is inhabited at each MH. Pi takes a
checkpoint with a fixed interval. Let C(i,α) denotes the αth checkpoint of Pi at MHi.

The process takes periodic checkpoint to limit the amount of work that has to be repeated in
execution replay upon recovery. The checkpoint period between two consecutive checkpointing of
Pi is determined by itself. That means the process takes local checkpoints asynchronously.

767

Time to take checkpoint, the replicated process state of Pi is created by MHi using the
checkpointing operation of the local checkpointable interface. The new checkpoint is encapsulated
into a determinant tuple #e with ‘checkpoint’ flag, and #e is appended into the event logging queue
EQi. After that, procedure Update_AG (EQi) is invoked for updating the antecedence graph. After
the updating, the logged determinant in the local EQi is cleared, to free the storage space in MHi.

During the normal failure-free execution, each event e, delivered by the local Pi, is passed to the
local logging mechanism, packed into the determinant #e, through Message_logging (e).

Upon a user input from outside world, a copy of the input is firstly passed to the local logging
mechanism, packed into the determinant #e, through Message_logging(e). After the event logging,
MHi starts to process the input. Similarly, before interacting with the outside world to show the
outcome of, a copy of the outcome is forwarded to local logging mechanism for logging firstly.
During procedure Message_logging(e), if the experienced event is an input or output, EQi is sent to
the local MSSp for updating the antecedence graph.

Upon the specific event(Periodically, the event logging queue of MH), EQi is transferred to the
local MSSp,

Considering the reliability of the fragile MH, each MSSp manages and maintains a persistent
antecedence graph AGp, to record the logs and happened-before relations in the local cell on behalf
of the local mobile hosts. The message determinants and checkpoints of each local MH are
positioned logically in the antecedence graph AGp, according to the happened-before relations
defined in definition 1.

To update the persistent antecedence graph, MHi sends the event logging queue EQi to the local
connected MSSp upon the specific event. Upon the receipt of the event logging queue EQi, the local
MSSp add the content of the event logging queue into the antecedence graph AGp, through
procedure Update_AG (AGp, EQi).

For each logged determinant #e in EQi, firstly a corresponding graph node σθ
i of AGp is created

by create_node_AG (AGp, #e) according to #e. Then, the previous graph node σθ-1
i precedes to #e

is retrieved in AGp. The corresponding edge between σθ-1
i and σθ

i of AGp is created by
Add_edge_AG (AGp, σθ-1

i, σθ
i), according to happened-before relation defined in definition 1.

If the new created graph node σθ
i corresponds to a normal message-receipt event, The related

graph node σβ
j corresponding to the message-sending event is retrieved from AGp firstly, and if the

σβ
j exists in AGp, then the corresponding edge between σβ

j and σθ
i of AGp is created by

Add_edge_AG (AGp, σβ
j, σθ

i), according to happened- before relation defined in definition 1.
If the new created graph node σθ

i corresponds to a normal message-sending event, The related
graph node σβ

j corresponding to the message-receipt event is retrieved from AGp firstly, and if the
σβ

j exists in AGp, then the corresponding edge between σθ
i and σβ

j of AGp is created by
Add_edge_AG (AGp, σθ

i, σβ
j), according to happened- before relation defined in definition 1.

If the new created graph node σθ
i corresponds to a checkpointing event, the procedure

Garbage_Collection (AG_Tp) is invoked to delete the nodes in AGp, happened-before the new
checkpoint to free the storage space.

Figure 2(a) presents a simple scene of mobile computing in which all the messages to and from
the local MHs are traversed through its connected MSS locally. The simple system contains three
mobile hosts, MH1, MH2 and MH3. All the MHs reside in the geographical cell of MSSp, CLp. In
practice, a typical system may contain many such components of MH and MSS.

According to the proposed log-based hybrid scheme, the copy of Pk’s input I1 in m3, the
checkpoint of Pj in m4 and the copy of output O1 in m5, are received by the local MSSp for logging
at time t1, t2 and t3, respectively, as shown in Figure 2(a).

768

m2

MHi m1

O1

m6

I1

m7

Initial

(a)

m1 m2 m4

m5

m7
MHj

MHk

MSSp

m3

m6

t1 t2 t3 t4

σ0
j

σ0
k

σ1
j σ2

j

σ1
k

σ0
i

(b)

σ1
i

σ2
j

σ2
k

σ2
i

σ1
k

(c)

σ1
i

Fig. 2. An example of the antecedence graph
According to the proposal, Figure 2(b) and Figure 2(c) show the recorded temporary and

persistent antecedence graph of a cell at time t4, at MSSp. Specifically, in persistent AG_Pp, node
σ2

i records #m7, while node σ2
j records #m2. In temporary AG_Tp, node σ2

i records #m7, while
node σ2

j records #m2, #m4, #m6 and #m7.

The Corresponding Recovery
For process Pi, a complete log consists of the latest checkpoint and logged determinants of all the

experienced nondeterministic events after the checkpoint. The proposed log-based hybrid scheme
supports independent rollback-recovery with the complete log. Considering the reliability of the
fragile MH, the rollback recovery can be classified into three cases as follows.

Case 1. If the content of the local event logging queue EQi is still available upon a process fault
of MHi, then MHi directly reloads the latest checkpoint from EQi, and replays the following logged
determinants after the checkpoint. According to the content of C, the failure process is able to
recover the lost computation independently, through replaying nondeterministic event logs in the
original irreflexive partial order.

Case 2. Only one failure process Pi loses the corresponding content of the local event logging
queue EQi, and no other failure process loses the local during the following recovery phase. In that
case, the checkpoint and all the nondeterministic event logs in lost EQi, can be extracted from the
latest local antecedence graph AGp. According to the checkpoint and nondeterministic event logs
extracted from AGp, the failure process is able to recover the lost computation independently.

Case 3. More than one failure processes lose the corresponding local event logging queues, or
another failure processes lose the corresponding content of the local event logging queue EQi
during a recovery of Case 2.

The non-failure process may also require to rollback for a consistent recovery without the
complete log. During the recovery, the logged events in the antecedence graph require to be
replayed in the original irreflexive partial order.

If the content of the local event logging queue EQi does not available through checking, then
MHi sends a recovery request, to its local MSSp. Upon the receipt of the recovery request, the
updating AG request is broadcasted to MHs by MSSp. Upon the receipt of the updating request,
each MH sends its EQ to the local MSS for updating the antecedence graph. After each MSS
updating the antecedence graph, the required recovery information EQi is extracted from the
antecedence graph AG, and finally the extracted EQi is sent to the failure process for rollback
recovery. Upon the receipt of the extracted EQi, MHi reloads the latest checkpoint in EQi, and
replays the following logged determinants after the checkpoint. According to the content of EQi,
finally the failure process is able to recover the lost computation, through replaying
nondeterministic event logs in the original irreflexive partial order.

769

During the recovery, deterministic event logs are useful to eliminate the repeated message to the
non-rollback process. Upon the receipt of the recovery request, the sub-antecedence graph AG_Fr is
extracted from temporary AG_Tp, and persistent AG_Pp. if AG_Tp is unavailable, AG_Fr is
required retrieving from the antecedence graphs at other MSSs combining with AG_Tp, and the
rollback has to be propagated to all the MHs in the local cell for consistent recoverability. At last,
AG_Fr is sent or broadcasted to the rollback MH. AG_Fr contains the latest checkpoint,
nondeterministic message logs and related happened-before relations, which are useful to recover
the failure process.

The rollback recovery will be propagated to all the MHs in the local cell for consistent
recoverability without the complete log. the lost nondeterministic messages in AG_Tp, the
across-cell messages, can be retrieved from the antecedence graphs at other MSSs, since the
proposal the antecedence graphs also records the local deterministic sending events, which is the
nondeterministic events for the failure destination MH in other cell. Under PWD assumption, the
lost computation within the cell can be deterministically recreated during the recovery.

Performances
For performance analysis, the fixed checkpoint interval of MHi is Ti. Log arrival rate of MHi

follows a Poisson process with rate λi per time unit. Let α denote the ratio of the number of
input/output to the total experienced messages. Let β denote the ratio of the number of connecting
message to the total messages. Let θ denote the ratio of the size of a checkpoint to a normal
messages.

Fig. 3. Average logging overhead incurred

The average logging overhead during the failure-free incurred by various logging schemes with
the varying message rate, is shown in Figure 3, where α=3%, β=2.5% and θ=30. The y-axis
indicates the average logging overhead incurred by access to the temporary and stable storage for
logging and corresponding operations, while the x-axis denotes the message arrival rate of a
process.

As shown in Figure 3, the proposed log-based hybrid scheme incurs a lower average logging
overhead than pessimistic and causal logging schemes. The reason is that proposed log-based
hybrid does not require the application to block but in case of the specific event, which reduced the
number of stable storage accessing. However, pessimistic logging requires the determinant of each
message to be logged synchronously into the stable storage, and leads to a high overhead of
frequent connection to the stable storage and relay blocking. In the causal logging, much overhead
is incurred by updating dependency relations among the antecedence graphs of mobile hosts, since

770

each mobile host holds one antecedence graph.

Conclusion
In this paper, we specifically address a hybrid log-based rollback recovery scheme for mobile

computing, in which all the messages experienced by the process and their happen-before relations
are encoded and recorded in the antecedence graph by the local mobile support station. For
efficiency, the antecedence graph is classified into temporary and persistent versions. The
temporary version is asynchronously transferred to the stable storage upon the specific event. The
proposed logging scheme enables the recoverability of the failure process by the independent or
propagated rollback styles. The performance of the proposal is evaluated by the extensive
simulation. By contrast, the results show that the proposal incurs a lower failure-free overhead on
the premise of the consistent recoverability.

Acknowledgement
In this paper, the work was sponsored by the Natural Science Foundation (No. 61303045).

References

[1] Kuang P., Field J., Varela C. A.. Fault tolerant distributed computing using asynchronous local
checkpointing[C]. Proceedings of the 2014 ACM SIGPLAN Workshop on Programming Based on
Actors, Agents, and Decentralized Control, 2014:81-93

[2] Meroufel B., Belalem G.. Lightweight coordinated checkpointing in cloud computing[J]. Journal
of High Speed Networks, 2014, 20(3):131-143

[3] Islam T.Z., Bagchi S., Eigenmann R.. Reliable and Efficient Distributed Checkpointing System
for Grid Environments[J]. Journal of Grid Computing, 2014, 12(4):593-613

[4] Mendizabal O.M., Marandi P.J., Dotti F.L.. Checkpointing in parallel state-machine
replication[C]. 18th International Conference on Principles of Distributed Systems, 2014,
8878:123-138

[5] Awasthi L. K., Misra M., Joshi R. C. et al.. Minimum mutable checkpoint-based coordinated
checkpointing protocol for mobile distributed systems[J]. International Journal of Communication
Networks and Distributed Systems, 2014, 12(4):356-380

[6] Sunil Kumar Gupta, R. K Chauhan, Parveen Kumar. Backward error recovery protocols in
distributed mobile systems: a survey[J]. Journal of Theoretical and Applied Information
Technology, 2008, 4 (4): 337-347

[7] E.N.Elnozahy, L.Alvisi, Y.M.Wang and D.B.Johnson. A Survey of Rollback-Recovery
Protocols in Message-Passing Systems[J]. ACM Computing Surveys, 2002, 34(3):375-408

[8] Taesoon Park, Namyoon Woo, Heon Y.Yeom. An Efficient Recovery Scheme for Mobile
Computing Environments[J]. Future Generation Computer Systems, 2003,19: 37-53

[9] Taesoon Park, Namyoon Woo, Heon Y. Yeom. An Efficient Optimistic Message Logging
Scheme for Recoverable Mobile Computing Systems[J]. IEEE Transactions on Mobile Computing,
2002, 1(4):265-277

[10] Zhang Zhan, Zuo Decheng, Ci Yiwei and Yang Xiaozong. A Rollback Recovery Algorithm
Based on Causal Message Logging in Mobile Environment[J]. Journal of Computer Research and
Development, 2008, 45(2): 348-357

771

