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Abstract. In recent years, malicious JavaScript code has become more and more pervasive and 
been used by attackers to perform their attacks on the Web. To evade the detection of defense 
measures, various kinds of obfuscation techniques have been applied by the malicious script, taking 
advantage of the dynamic nature of JavaScript language. In this paper, we propose a new 
machine-learning based detection approach aiming at defeating such evasion attempts. Dynamic 
execution traces are recorded to capture all behaviors performed by the malicious script, including 
the dynamic generated code. Semantic-based deobfuscation is used to simplify the traces to get 
more concise and more essential instructions. None-ordered and none-concessive trace patterns are 
extracted from the deobfuscated traces to represent the intrinsic features for malicious scripts. We 
evaluated our approach with a large number of dataset collected from the Internet. The empirical 
results demonstrate that our approach is able to detect obfuscated malicious JavaScript code both 
effectively and efficiently. 

Introduction 
Nowadays, various kinds of Web sites rely on JavaScript for better user experience and enhanced 

functionality. However, JavaScript can also be used by attackers to trick the victim to click a 
malicious link pointed to a malicious page, or to exploit security vulnerabilities in the environment 
of the victim. To defeat such attacks, many detection and mitigation methods have been proposed. 
Some considered using high-interaction and low-interaction honeypots [1, 2] to attract, record and 
analyze JavaScript attacks. Some aim at off-line analysis of JavaScript code [3, 4]. Recent work has 
integrated machine learning techniques into malicious JavaScript detection [5-11]. However, 
existing approaches have not paid adequate attention for the problem of obfuscation. Obfuscation is 
a kind of code transformation that makes the code unintelligible, including data obfuscation, logic 
obfuscation, encoding obfuscation and so on. It is prevalently adopted by malicious code to conceal 
the malicious intent and to escape the detection of defense measures. 

In this paper, we propose a new machine-learning based detection approach for obfuscated 
malicious JavaScript. We use the dynamic execution trace of the JavaScript program as the primary 
data from which we extract representative features for machine learning. This avoids several 
obfuscation techniques only effective for static analysis. As for the dynamic code unfolding, real 
malicious script has to be deobfuscated anyway in order to fulfil its intent, which will be captured 
by the execution trace eventually. We adopt semantic-based deobfuscation technique to simplify the 
trace. The semantic-based deobfuscation technique was originally proposed for simplifying 
obfuscated JavaScript code automatically. As we do not need to recover the program in the form of 
source code for further human investigation, we just use the deobfuscation slicing to simplify the 
trace. On the one hand, the trace is deobfuscated, thus will be more powerful and useful to extract 
features that represent intrinsic characteristics of malicious code. On the other hand, the trace is 
simplified, which decreases the time and space overhead to process it. We extract none-ordered and 
none-consecutive sequence patterns from the trace as the features for machine learning. Compared 
to previously used n-gram patterns [8, 11], it could help defeat logic obfuscation such as insertion of 
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irrelevant instructions or switching instruction orders. 
To evaluate our approach, we investigated a large dataset collected from the Internet. The best 

performance of our approach achieves 99.64% accuracy, 97.74% precision, 93.05% recall and 
95.34% F-measure. Our approach runs without incurring too much overhead, which might be used 
to implement a real-time detection tool in the practical setting. 

JavaScript Obfuscation 
In order to escape the detection of defense measures and to hide the malicious intent, obfuscation 

techniques have been applied prevalently by malicious JavaScript code. We summarize these 
techniques into five categories as follows and present examples for each category in Fig. 1. 

 
Fig. 1. JavaScript obfuscation examples 

Approach 
To detect obfuscated malicious JavaScript, we use machine learning approaches and the 

overview of such process is shown in Fig. 2. 

 
Fig. 2. Approach overview 

Execution Trace Collection. In our work, we adopt byte-code level dynamic analysis. 
Byte-code level analysis can take advantage of the compiler because those obfuscation methods 
aiming at confusing human or source-code level tools will be removed or revealed after compilation. 
To collect the trace of JavaScript execution, we instrument the open-source Web browser Mozilla 
Firefox. The traces are in the form of JavaScript Opcode, which is an intermediate byte-code level 
representation during the Web page rendering process. 
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Semantics-based Deobfuscation. To mitigate the problem caused by code unfolding 
obfuscation, we adopt the semantics-based deobfuscation proposed by Lu and Debray [12, 13], 
which simplifies a given script by removing deobfuscation-related instructions and producing a 
semantically equivalent script. The motivation comes from the intuition behind the deobfuscation 
process. Although the original source code cannot be recovered exactly, we can produce the code 
that is semantics equivalent to the original one because it can be expected that any obfuscation and 
deobfuscation process should be semantics preserving. With the help of semantics-based 
deobfuscation, we can gain benefits from two aspects. On the one hand, the deobfuscated 
instructions are more essential to characterize the malicious codes, the features extracted from 
which are more useful to guide the machine learning algorithms to achieve better performance. On 
the other hand, the deobfuscated instructions are more concise to process, which save the time and 
space cost of machine learning algorithms. 

To perform the semantic-based deobfuscation, the definition of semantic equivalence is essential. 
Consider the analysis of the potential malicious script, observational equivalence is a practical 
definition. That is to say, if two scripts interact with the outer environment through the same way, 
they will be considered equivalent. Because native calls are the only approach to interact with the 
outer environment, two scripts are considered equivalent if they have the same native call sequences 
with the same arguments. In this way, we can simplify the process of deobfuscation by identifying 
codes that affect the native calls both directly and indirectly. 

To identify instructions that affect native functions, deobfuscation slicing is used, which is based 
on dynamic slicing. For a given variable in the execution trace of a script, dynamic slicing identifies 
which instructions actually affect the value of such variable. 

Trace Pattern Mining. Given the deobfuscated JavaScript execution traces, we would like to 
extract representative features from them to characterize script intent and help detect malicious 
scripts. We believe the relationship among execution instructions in the trace contains the 
information of the behavior of the program. Therefore, the trace patterns are mined from instruction 
sequences, but not limited to ordered and consecutive sequences like n-gram does. Malicious 
programs frequently insert irrelevant garbage instruction and change the order of instructions to 
obfuscate the logic of the program. Any detection approach based on ordered and consecutive 
sequences could be fooled and fail to detect the malicious behavior. 

To mine trace patterns from instruction sequences, we use Apriori algorithm, which is a classical 
approach to compute patterns and association rules, to generate trace patterns. To select appropriate 
trace patterns as features for our classifier, the following two criteria are used:  

1) The frequency of the trace pattern should be high enough in the dataset used for training. If it 
rarely occurs, it will be considered as noise and excluded from our features. 

2) The trace pattern should be a significant indicator distinguishing malicious and benign scripts 
from each other. That is to say, it should be frequent in malicious script and infrequent in benign 
script, or vice versa. 

Considering the first term, only frequent trace patterns are extracted. In the Apriori algorithm, 
there is a parameter named support, which is the number of a pattern occurs in all data. We call a 
trace pattern frequent if its support is above a minimum support value. 

To satisfy the second criteria, for a given pattern Pi, we define the term significance (denoted as 
Sig) as follows: 
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In this formula, NBCount(Pi) is the normalized count for the benign dataset and NMCount(Pi) is 
the normalized count for the malicious dataset. The normalized count for a dataset D refers to the 
frequency of the trace pattern appears in D divided by the number of scripts in D. ɛ is a small 
constant to avoid the divide-by-zero error. The normalization helps us factor out the problem caused 
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by imbalance size of benign and malicious datasets. 

Experiment 
Data Collection. To the best of our knowledge, there is no standard benchmarks of malicious 

JavaScript that are publicly available. Therefore, we constructed our own datasets of benign and 
malicious scripts. For the benign dataset, we crawled 10,000 scripts from the Web sites listed in the 
Alexa top 500. From each site, 20 scripts are fetched randomly. Every script was validated with 
VirusTotal. The malicious dataset was created by collecting samples from different malware 
repositories. The malicious samples contain various types of scripts that attack browser 
vulnerabilities, attack the PDF reader, attack the Java Runtime Environment, attack the Flash plugin, 
attack based on multimedia, and so on. VirusTotal assisted with manual inspection was used to 
ensure they were malicious. In the end, a total of 1,000 samples were collected. 

Evaluation Approach. For evaluation, we used Accuracy, Precision, Recall and F-measure, 
which are widely used metrics in machine learning. In addition, stratified 10-fold cross validation 
was employed, where the dataset was separated to 10 sets randomly. In each set, the proportion of 
malicious to benign scripts is maintained. Each one of them was used as testing dataset and the rest 
ones were used as training dataset, thus 10 combinations were evaluated. This process is repeated 
10 times, and the average result of 100 runs is reported. 

One issue we should further consider is data imbalance which many real-world applications 
suffer from. Data imbalance means one class data appears more than another class data, which 
causes the machine learning methods biased towards the majority class. To deal with this problem, 
there are two common approaches: re-sampling the data and re-weighting the data. Re-sampling 
changes the number of instances in different classes to make them in the same level. Re-weighting 
changes the weight of instances in different classes. We evaluated both two methods and 
re-weighting performs better, therefore re-weighting was used in all experiments. A weight 
according to the proportion of malicious to benign scripts was assigned to each malicious sample in 
the training data. The testing data was maintained the same ratio of malicious to benign scripts as in 
the original dataset. 

Parameter Selection. To evaluate our approach with different parameter settings, we tested 
several key parameters with controlled experiments, including pattern size, minimum support, 
significance and machine learning algorithms. 

 
(a) pattern size          (b) minimum support             (c) significance 

Fig.3. Parameter selection results 
1) Pattern Size: Small values of pattern size can lead to bias caused by inadequate relationship 

information, while large values of pattern can result in high variance because of over-fitting. 
Increasing pattern causes the feature space increase exponentially, therefore the maximum size is up 
to 4 due to the limit of the memory. As we can see the result presented in Fig. 3(a), the best pattern 
size is 2. 

2) Minimum Support: The minimum support is represented as the percentage of all mined 
patterns. Suppose the number of all mined patterns is n, and the minimum support is s, then all 
patterns less than n*s will be filtered out. The result of varying minimum support is presented in Fig. 
3(b). The performance gets worse as we increase the minimum support. The reason might be larger 
support value filters more patterns which can be useful. With this trend, we also wanted to evaluate 
smaller support values; however, smaller support means more patterns retained, which is limited by 
the memory size. Therefore, 0.1 is set to be the best minimum support value. 
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3) Minimum Significance: Larger significance causes less but more significant patterns to be 
retained. The effect of minimum significance on the performance is shown in Fig. 3(c). As we can 
see, the value 1.2 is the best one which balances the significance and the number of useful patterns. 

4) Machine Learning Algorithm: The impact of different machine learning algorithms was 
evaluated by several classic and representative algorithms. Table 1 presents the effectiveness for our 
approach with J48 decision tree, Naive Bayes, Logistic Regression and linear SVM. We used the 
implementation of these algorithms in python package scikit-learn with default settings. Among 
them, linear SVM achieves the best overall performance. 

Table 1. Performance of different algorithms 
Algorithm Accuracy Precision Recall F-measure 

J48 0.9948 0.9777 0.8875 0.9304 
Naïve Bayes 0.9282 0.3147 0.7029 0.4347 

Logistic Regression 0.9937 0.9970 0.8420 0.9130 
SVM 0.9964 0.9774 0.9305 0.9534 

Comparison. To demonstrate the effectiveness of our work, we compared it with two 
state-of-the-art methods, namely JSAND [5] and Opcode Analysis [8]. JSAND is publicly available 
as an online service; therefore, it uses different datasets for training. Opcode Analysis uses n-grams 
of dynamic traces and improves CUJO [11] through a bounded but high coverage feature space. We 
implemented Opcode Analysis and evaluated it using the same training and testing dataset as our 
approach. We selected n = 3 as the best setting after several evaluation for different n. To 
demonstrate the effectiveness of the semantic-based deobfuscation used by our approach, we also 
considered our approach without using deobfuscation. Our approach used the best parameters 
among previous evaluated ones. The comparison result is shown in Table 2. JSAND has the best 
precision, but the recall is very low. Opcode Analysis performs better than our approach without 
deobfuscation, but worse than our approach with full phases. Among all approaches, our approach 
with full phases achieves the best overall performance. 

Table 2. Performance of different approaches 
Approach Accuracy Precision Recall F-measure 
JSAND 0.6987 1.0000 0.3005 0.3005 

Opcode Analysis 0.9685 0.9557 0.8251 0.8856 
Ours-NoDeobfuscation 0.9556 0.9103 0.7760 0.8378 

Ours-Full 0.9964 0.9774 0.9305 0.9534 
Runtime Overhead. We recorded the running time of different phases of our approach, which is 

shown in Table 3. The main overheads come from the deobfuscation phase. Although the total time 
of the deobfuscation for all 11,000 scripts is 3,153.65 seconds, the average time for each one is just 
286.7 milliseconds, which is practically acceptable. The average time for each script including all 
phases demonstrates the potential of our approach being used as a real-time detection tool, which 
can be integrated in the browser. 

Table 3. Running time of different phases 
Phase Number Total (s) Average (ms) 

Trace Collection 11,000 758.37 68.94 
Deobfuscation 11,000 3,153.65 286.70 
Pattern Mining 11,000 1,366.52 124.23 

Training 9,900*100 324.21 0.33 
Testing 1,100*100 28.13 0.26 

Conclusion 
As malicious JavaScript code on the Web spreads and armed with more sophisticated evasion 

techniques such as obfuscation, malicious script detection techniques should be improved to defeat 
such threats in an effective and efficient way. We propose our approach targeting for detection of 
obfuscated malicious JavaScript code and evaluate it with real-world samples from the Internet. The 
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results show that our approach is able to improve the performance of obfuscated malicious script 
detection without incurring too much overhead. In the future, we plan to deal with more 
sophisticated code obfuscation techniques. 
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