

Obfuscated Malicious JavaScript Detection by Machine Learning
Jinkun Pan1, a, Xiaoguang Mao1, 2

1 College of Computer, National University of Defense Technology, Changsha, 410073, China
2 Laboratory of Science and Technology on Integrated Logistics Support, National University of

Defense Technology, Changsha, 410073, China
aemail: pan_jin_kun@163.com

Keywords: Malicious JavaScript Detection; Machine Learning; Obfuscation; Dynamic Trace;
Semantic-based Deobfuscation; Trace Pattern

Abstract. In recent years, malicious JavaScript code has become more and more pervasive and
been used by attackers to perform their attacks on the Web. To evade the detection of defense
measures, various kinds of obfuscation techniques have been applied by the malicious script, taking
advantage of the dynamic nature of JavaScript language. In this paper, we propose a new
machine-learning based detection approach aiming at defeating such evasion attempts. Dynamic
execution traces are recorded to capture all behaviors performed by the malicious script, including
the dynamic generated code. Semantic-based deobfuscation is used to simplify the traces to get
more concise and more essential instructions. None-ordered and none-concessive trace patterns are
extracted from the deobfuscated traces to represent the intrinsic features for malicious scripts. We
evaluated our approach with a large number of dataset collected from the Internet. The empirical
results demonstrate that our approach is able to detect obfuscated malicious JavaScript code both
effectively and efficiently.

Introduction
Nowadays, various kinds of Web sites rely on JavaScript for better user experience and enhanced

functionality. However, JavaScript can also be used by attackers to trick the victim to click a
malicious link pointed to a malicious page, or to exploit security vulnerabilities in the environment
of the victim. To defeat such attacks, many detection and mitigation methods have been proposed.
Some considered using high-interaction and low-interaction honeypots [1, 2] to attract, record and
analyze JavaScript attacks. Some aim at off-line analysis of JavaScript code [3, 4]. Recent work has
integrated machine learning techniques into malicious JavaScript detection [5-11]. However,
existing approaches have not paid adequate attention for the problem of obfuscation. Obfuscation is
a kind of code transformation that makes the code unintelligible, including data obfuscation, logic
obfuscation, encoding obfuscation and so on. It is prevalently adopted by malicious code to conceal
the malicious intent and to escape the detection of defense measures.

In this paper, we propose a new machine-learning based detection approach for obfuscated
malicious JavaScript. We use the dynamic execution trace of the JavaScript program as the primary
data from which we extract representative features for machine learning. This avoids several
obfuscation techniques only effective for static analysis. As for the dynamic code unfolding, real
malicious script has to be deobfuscated anyway in order to fulfil its intent, which will be captured
by the execution trace eventually. We adopt semantic-based deobfuscation technique to simplify the
trace. The semantic-based deobfuscation technique was originally proposed for simplifying
obfuscated JavaScript code automatically. As we do not need to recover the program in the form of
source code for further human investigation, we just use the deobfuscation slicing to simplify the
trace. On the one hand, the trace is deobfuscated, thus will be more powerful and useful to extract
features that represent intrinsic characteristics of malicious code. On the other hand, the trace is
simplified, which decreases the time and space overhead to process it. We extract none-ordered and
none-consecutive sequence patterns from the trace as the features for machine learning. Compared
to previously used n-gram patterns [8, 11], it could help defeat logic obfuscation such as insertion of

2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016)

© 2016. The authors - Published by Atlantis Press 805

irrelevant instructions or switching instruction orders.
To evaluate our approach, we investigated a large dataset collected from the Internet. The best

performance of our approach achieves 99.64% accuracy, 97.74% precision, 93.05% recall and
95.34% F-measure. Our approach runs without incurring too much overhead, which might be used
to implement a real-time detection tool in the practical setting.

JavaScript Obfuscation
In order to escape the detection of defense measures and to hide the malicious intent, obfuscation

techniques have been applied prevalently by malicious JavaScript code. We summarize these
techniques into five categories as follows and present examples for each category in Fig. 1.

Fig. 1. JavaScript obfuscation examples

Approach
To detect obfuscated malicious JavaScript, we use machine learning approaches and the

overview of such process is shown in Fig. 2.

Fig. 2. Approach overview

Execution Trace Collection. In our work, we adopt byte-code level dynamic analysis.
Byte-code level analysis can take advantage of the compiler because those obfuscation methods
aiming at confusing human or source-code level tools will be removed or revealed after compilation.
To collect the trace of JavaScript execution, we instrument the open-source Web browser Mozilla
Firefox. The traces are in the form of JavaScript Opcode, which is an intermediate byte-code level
representation during the Web page rendering process.

806

Semantics-based Deobfuscation. To mitigate the problem caused by code unfolding
obfuscation, we adopt the semantics-based deobfuscation proposed by Lu and Debray [12, 13],
which simplifies a given script by removing deobfuscation-related instructions and producing a
semantically equivalent script. The motivation comes from the intuition behind the deobfuscation
process. Although the original source code cannot be recovered exactly, we can produce the code
that is semantics equivalent to the original one because it can be expected that any obfuscation and
deobfuscation process should be semantics preserving. With the help of semantics-based
deobfuscation, we can gain benefits from two aspects. On the one hand, the deobfuscated
instructions are more essential to characterize the malicious codes, the features extracted from
which are more useful to guide the machine learning algorithms to achieve better performance. On
the other hand, the deobfuscated instructions are more concise to process, which save the time and
space cost of machine learning algorithms.

To perform the semantic-based deobfuscation, the definition of semantic equivalence is essential.
Consider the analysis of the potential malicious script, observational equivalence is a practical
definition. That is to say, if two scripts interact with the outer environment through the same way,
they will be considered equivalent. Because native calls are the only approach to interact with the
outer environment, two scripts are considered equivalent if they have the same native call sequences
with the same arguments. In this way, we can simplify the process of deobfuscation by identifying
codes that affect the native calls both directly and indirectly.

To identify instructions that affect native functions, deobfuscation slicing is used, which is based
on dynamic slicing. For a given variable in the execution trace of a script, dynamic slicing identifies
which instructions actually affect the value of such variable.

Trace Pattern Mining. Given the deobfuscated JavaScript execution traces, we would like to
extract representative features from them to characterize script intent and help detect malicious
scripts. We believe the relationship among execution instructions in the trace contains the
information of the behavior of the program. Therefore, the trace patterns are mined from instruction
sequences, but not limited to ordered and consecutive sequences like n-gram does. Malicious
programs frequently insert irrelevant garbage instruction and change the order of instructions to
obfuscate the logic of the program. Any detection approach based on ordered and consecutive
sequences could be fooled and fail to detect the malicious behavior.

To mine trace patterns from instruction sequences, we use Apriori algorithm, which is a classical
approach to compute patterns and association rules, to generate trace patterns. To select appropriate
trace patterns as features for our classifier, the following two criteria are used:

1) The frequency of the trace pattern should be high enough in the dataset used for training. If it
rarely occurs, it will be considered as noise and excluded from our features.

2) The trace pattern should be a significant indicator distinguishing malicious and benign scripts
from each other. That is to say, it should be frequent in malicious script and infrequent in benign
script, or vice versa.

Considering the first term, only frequent trace patterns are extracted. In the Apriori algorithm,
there is a parameter named support, which is the number of a pattern occurs in all data. We call a
trace pattern frequent if its support is above a minimum support value.

To satisfy the second criteria, for a given pattern Pi, we define the term significance (denoted as
Sig) as follows:

() , () ()
()

()
() , () ()
()

i
i i

i
i

i
i i

i

NBCount P NBCount P NmCount P
NMCount P

Sig P
NMCount P NBCount P NmCount P
NBCount P

ε
ε
ε
ε

+ ≥ +=  + <
 +

In this formula, NBCount(Pi) is the normalized count for the benign dataset and NMCount(Pi) is
the normalized count for the malicious dataset. The normalized count for a dataset D refers to the
frequency of the trace pattern appears in D divided by the number of scripts in D. ɛ is a small
constant to avoid the divide-by-zero error. The normalization helps us factor out the problem caused

807

by imbalance size of benign and malicious datasets.

Experiment
Data Collection. To the best of our knowledge, there is no standard benchmarks of malicious

JavaScript that are publicly available. Therefore, we constructed our own datasets of benign and
malicious scripts. For the benign dataset, we crawled 10,000 scripts from the Web sites listed in the
Alexa top 500. From each site, 20 scripts are fetched randomly. Every script was validated with
VirusTotal. The malicious dataset was created by collecting samples from different malware
repositories. The malicious samples contain various types of scripts that attack browser
vulnerabilities, attack the PDF reader, attack the Java Runtime Environment, attack the Flash plugin,
attack based on multimedia, and so on. VirusTotal assisted with manual inspection was used to
ensure they were malicious. In the end, a total of 1,000 samples were collected.

Evaluation Approach. For evaluation, we used Accuracy, Precision, Recall and F-measure,
which are widely used metrics in machine learning. In addition, stratified 10-fold cross validation
was employed, where the dataset was separated to 10 sets randomly. In each set, the proportion of
malicious to benign scripts is maintained. Each one of them was used as testing dataset and the rest
ones were used as training dataset, thus 10 combinations were evaluated. This process is repeated
10 times, and the average result of 100 runs is reported.

One issue we should further consider is data imbalance which many real-world applications
suffer from. Data imbalance means one class data appears more than another class data, which
causes the machine learning methods biased towards the majority class. To deal with this problem,
there are two common approaches: re-sampling the data and re-weighting the data. Re-sampling
changes the number of instances in different classes to make them in the same level. Re-weighting
changes the weight of instances in different classes. We evaluated both two methods and
re-weighting performs better, therefore re-weighting was used in all experiments. A weight
according to the proportion of malicious to benign scripts was assigned to each malicious sample in
the training data. The testing data was maintained the same ratio of malicious to benign scripts as in
the original dataset.

Parameter Selection. To evaluate our approach with different parameter settings, we tested
several key parameters with controlled experiments, including pattern size, minimum support,
significance and machine learning algorithms.

(a) pattern size (b) minimum support (c) significance

Fig.3. Parameter selection results
1) Pattern Size: Small values of pattern size can lead to bias caused by inadequate relationship

information, while large values of pattern can result in high variance because of over-fitting.
Increasing pattern causes the feature space increase exponentially, therefore the maximum size is up
to 4 due to the limit of the memory. As we can see the result presented in Fig. 3(a), the best pattern
size is 2.

2) Minimum Support: The minimum support is represented as the percentage of all mined
patterns. Suppose the number of all mined patterns is n, and the minimum support is s, then all
patterns less than n*s will be filtered out. The result of varying minimum support is presented in Fig.
3(b). The performance gets worse as we increase the minimum support. The reason might be larger
support value filters more patterns which can be useful. With this trend, we also wanted to evaluate
smaller support values; however, smaller support means more patterns retained, which is limited by
the memory size. Therefore, 0.1 is set to be the best minimum support value.

808

3) Minimum Significance: Larger significance causes less but more significant patterns to be
retained. The effect of minimum significance on the performance is shown in Fig. 3(c). As we can
see, the value 1.2 is the best one which balances the significance and the number of useful patterns.

4) Machine Learning Algorithm: The impact of different machine learning algorithms was
evaluated by several classic and representative algorithms. Table 1 presents the effectiveness for our
approach with J48 decision tree, Naive Bayes, Logistic Regression and linear SVM. We used the
implementation of these algorithms in python package scikit-learn with default settings. Among
them, linear SVM achieves the best overall performance.

Table 1. Performance of different algorithms
Algorithm Accuracy Precision Recall F-measure

J48 0.9948 0.9777 0.8875 0.9304
Naïve Bayes 0.9282 0.3147 0.7029 0.4347

Logistic Regression 0.9937 0.9970 0.8420 0.9130
SVM 0.9964 0.9774 0.9305 0.9534

Comparison. To demonstrate the effectiveness of our work, we compared it with two
state-of-the-art methods, namely JSAND [5] and Opcode Analysis [8]. JSAND is publicly available
as an online service; therefore, it uses different datasets for training. Opcode Analysis uses n-grams
of dynamic traces and improves CUJO [11] through a bounded but high coverage feature space. We
implemented Opcode Analysis and evaluated it using the same training and testing dataset as our
approach. We selected n = 3 as the best setting after several evaluation for different n. To
demonstrate the effectiveness of the semantic-based deobfuscation used by our approach, we also
considered our approach without using deobfuscation. Our approach used the best parameters
among previous evaluated ones. The comparison result is shown in Table 2. JSAND has the best
precision, but the recall is very low. Opcode Analysis performs better than our approach without
deobfuscation, but worse than our approach with full phases. Among all approaches, our approach
with full phases achieves the best overall performance.

Table 2. Performance of different approaches
Approach Accuracy Precision Recall F-measure
JSAND 0.6987 1.0000 0.3005 0.3005

Opcode Analysis 0.9685 0.9557 0.8251 0.8856
Ours-NoDeobfuscation 0.9556 0.9103 0.7760 0.8378

Ours-Full 0.9964 0.9774 0.9305 0.9534
Runtime Overhead. We recorded the running time of different phases of our approach, which is

shown in Table 3. The main overheads come from the deobfuscation phase. Although the total time
of the deobfuscation for all 11,000 scripts is 3,153.65 seconds, the average time for each one is just
286.7 milliseconds, which is practically acceptable. The average time for each script including all
phases demonstrates the potential of our approach being used as a real-time detection tool, which
can be integrated in the browser.

Table 3. Running time of different phases
Phase Number Total (s) Average (ms)

Trace Collection 11,000 758.37 68.94
Deobfuscation 11,000 3,153.65 286.70
Pattern Mining 11,000 1,366.52 124.23

Training 9,900*100 324.21 0.33
Testing 1,100*100 28.13 0.26

Conclusion
As malicious JavaScript code on the Web spreads and armed with more sophisticated evasion

techniques such as obfuscation, malicious script detection techniques should be improved to defeat
such threats in an effective and efficient way. We propose our approach targeting for detection of
obfuscated malicious JavaScript code and evaluate it with real-world samples from the Internet. The

809

results show that our approach is able to improve the performance of obfuscated malicious script
detection without incurring too much overhead. In the future, we plan to deal with more
sophisticated code obfuscation techniques.

Acknowledgments
This research was supported in part by grants from National Natural Science Foundation of

China (Nos. 61379054, 61502015 and 91318301), and Program for New Century Excellent Talents
in University.

References

[1] A. Büscher, M. Meier, and R. Benzmüller, Throwing a monkeywrench into web attackers plans,
Communications and Multimedia Security, 2010, pp. 28-39

[2] M. T. Qassrawi and H. Zhang, Detecting malicious web servers with honeyclients, Journal of
Networks, 2011, 6, pp. 145-152

[3] S. Karanth, S. Laxman, P. Naldurg, R. Venkatesan, J. Lambert, and J. Shin, ZDVUE:
prioritization of javascript attacks to discover new vulnerabilities, Proceedings of the 4th ACM
workshop on Security and artificial intelligence, 2011, pp. 31-42

[4] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, Rozzle: De-cloaking internet malware, IEEE
Symposium on Security and Privacy, 2012, pp. 443-457

[5] M. Cova, C. Kruegel, and G. Vigna, Detection and analysis of drive-by-download attacks and
malicious JavaScript code, Proceedings of the 19th international conference on World Wide Web,
2010, pp. 281-290

[6] D. Canali, M. Cova, G. Vigna, and C. Kruegel, Prophiler: a fast filter for the large-scale
detection of malicious web pages, Proceedings of the 20th international conference on World Wide
Web, 2011, pp. 197-206

[7] J. Wang, Y. Xue, Y. Liu, and T. H. Tan, JSDC: A Hybrid Approach for JavaScript Malware
Detection and Classification, Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, 2015, pp. 109-120

[8] G. K. Jayasinghe, J. S. Culpepper, and P. Bertok, Efficient and effective realtime prediction of
drive-by download attacks, Journal of Network and Computer Applications, 2014, 38, pp. 135-149

[9] M. Heiderich, T. Frosch, and T. Holz, Iceshield: Detection and mitigation of malicious
websites with a frozen dom, Recent Advances in Intrusion Detection, 2011, pp. 281-300

[10] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert, ZOZZLE: Fast and Precise In-Browser
JavaScript Malware Detection, USENIX Security Symposium, 2011, pp. 33-48

[11] K. Rieck, T. Krueger, and A. Dewald, Cujo: efficient detection and prevention of
drive-by-download attacks, Proceedings of the 26th Annual Computer Security Applications
Conference, 2010, pp. 31-39

[12] G. Lu and S. Debray, Automatic simplification of obfuscated JavaScript code: A
semantics-based approach, Proceedings of the Sixth International Conference on Software Security
and Reliability, 2012, pp. 31-40

[13] G. Lu, K. Coogan, and S. Debray, Automatic simplification of obfuscated JavaScript code,
Information Systems, Technology and Management, 2012, 1, pp. 348-359

810

