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Abstract. Extreme learning machine (ELM) algorithm, which becomes more and more popular in 
the area of artificial intelligence for the past few years, is faster than the traditional machine 
learning algorithms, especially than the single hidden layer feed-forward neural networks (SLFNs). 
However, ELM is merely commonly used in the field of computer science or other hot areas. This 
paper investigates the ability of ELM to emulate the atmospheric nonlinear systems. The 
performance of ELM on emulating the nonlinear chaotic system - Lorenz63 is analyzed. The results 
show that ELM can accurately and quickly simulate the Lorenz63 forecast field at different forecast 
length, and thus providing a new idea for solving kinds of atmospheric nonlinear equations. 

Introduction 
The traditional neural networks (such as BP neural network) based on the gradient descent 

algorithms are widely used in training the multilayer feed-forward neural network for its good 
learning ability [1]. However, these traditional learning algorithms need to correct weight and 
threshold values with many iterations, and easily lead to time-consuming, slow speed, fall into local 
optimal solution and must adjust different parameters (learning rate, for instance) for different 
applications. The problems described above become major bottlenecks restricting the development 
of traditional neural networks. Therefore, a novel feed-forward neural network was proposed [2], 
namely Extreme learning machine algorithm, which can fast and accurately obtain global optimal 
solution with simple adjustment of network parameters, and thus has been the concerns and hot 
topics for many scholars in recent years [3,4]. Zong studied the performance of the one-against-all 
(OAA) and one-against-one (OAO) ELM for classification in multi-label face recognition 
applications [5]. A real-time watermarking scheme based on Regularized Extreme Learning 
Machine (RELM) was developed, which can extract the watermark from the watermarked image 
within very short time, the training speed always hundreds of times faster than BP neural network 
and Support Vector Machine (SVM)) [6]. Moreover, Liu proposed a general learning framework, 
termed multiple kernel extreme learning machines (MK-ELM), which can provide a general 
framework for ELM to integrate multiple heterogeneous data sources for classification [7]. 

Numerical Weather Prediction (NWP) is essentially the numerical dynamic simulation of 
atmospheric motion by highly nonlinear differential equations, and how to quickly and accurately 
solve the equations has been an important work for meteorologists. However, equations in NWP 
always tend to be very complex, if there is a kind of new method for a new algorithm which would 
be used for NWP, for convenience, we usually choose a relatively simple model and can still 
represent the actual characteristics of atmospheric state. Lorenz63 is such a system, for instance, 
which was chosen by Cao to verify the performance of a new data assimilation method based on 
dual-number theory in numerical weather prediction, as in [8]. Chen also adopted following three 
methods: Augmented Ensemble Kalman Filter (AEnKF), Dual Ensemble Kalman Filter (DEnKF) 
and Simultaneous Optimization and Data Assimilation (SODA) to compare the effect of 
simultaneous states and parameters estimation based on Lorenz63 model [9]. Therefore this paper 
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employs the Lorenz63 system to do the numerical experiments. 
In this paper, we explore the possibility of applying the ELM algorithm to simulate the 

atmospheric nonlinear chaotic system - Lorenz63. The structure of the paper is organized as follows. 
The following section introduces the calculation principle and flow of ELM algorithm. Then, we 
present the feature of Lorenz63 system and discuss the results of the numerical simulated 
experiments. Finally, conclusions and plans for future work are drawn. 

The Elm Alogrithm 
The ELM algorithm randomly generates the continuous weight and threshold values between the 

input layer and the hidden layer without adjusting parameters in the training phase except setting 
the number neurons in hidden layer, and thereby can obtain the global optimal solution. It has the 
advantages of fast learning speed and good generalization performance compared with the 
traditional training methods. Figure1 shows the structure of a typical SLFN. 
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Fig.1. Typical structure of a SLFN 
For N random samples ( , )i ix t , where 1, 2 , ,
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mathematical model of a SLFN with l  nodes in hidden layer can be expressed as (1) and (2):  

Hβ = T                                                                     (1) 
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Among them, the left side of the Eq. 1 corresponds to the left side of the Eq. 2. H  being the 
output matrix of the hidden layer, β , T , ( )g x , [ ]1 2, , , T

i i i inw w w=w L and ib  are ouput weights, 
expected output, activation function, input weight and bias respectively. 

Minimizing the ouput error is the learning goal of a neural network, that is  

1
0

l

j j
j=

− =∑ o t                                                              (3) 

wherein jo is the forecast values generated from the neural network. 
It is hard for us to adjust all the parameters in traditional neural network based on the gradient 

descent method to deal with different cases. However, for ELM algorithm, the output weight iw  
and bias ib  can be given randomly and the output matrix H  is uniquely determined. 

The algorithm procedure of ELM is described as follows: 
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step1: randomly generate the parameters used for hidden nodes ( , ), 1, ,i i i l= Kw b .  
step2: calculate the output matrix H of the hidden layer.  
step3: calculate the output weight β , and the optimal solution of which is †β̂ = H T , where 

† 1( )T T−=H H H H  is the Moore-Penrose generalized inverse matrix of H , and it has been proved 
that its norm is minimum and unique.  
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Fig.2. Flow of ELM 
In summary, the flow of ELM algorithm can be expressed as follows (Fig. 2): 
(1) Generate the training data set and test data set: in order to obtain better generalization 

performance of the simulated model, sufficient and better representative samples are required for 
ELM. 

(2) Create and train the ELM model. 
(3) ELM simulation test. 
(4) Performance evaluation. The generalization ability of the ELM model can be evaluated by 

the means of the error (such as the root mean square error, RMSE) between the predicted and real 
values. 

Lorenz63 Nonlinear Chaotic System 
In 1963, meteorologist E.N. Lorenz found a famous nonlinear differential system (called as 

Lorenz63) when he did the numerical calculation of dynamic models in weather prediction, and it 
was the first strange attractor observed in chaotic phenomenon [10]. It has been found that Lorenz 
equations can be used as accurate models of many real chaotic motion (such as turbulence, 
convection, oblique wave and so on), and thus it is brought to the attention of many scientists. 
Lorenz63 model equations are: 

( )dx dt x y
dy dt x y xz
dz dt xy z

σ
γ

β

= − +
= − −
= −

                                                          (4) 

Where , ,σ γ β represent the atmospheric Prandtl number, Rayleigh number and parameters 
associated with convective scale respectively [11]. x can be considered as atmospheric convection 
intensity, y is the maximum temperature difference, z is the changing of atmospheric layers 
caused by convection motion. Although the model is simple, this non-linear system has a lot of 
similar dynamic features with the atmosphere. The Lorenz63 system is dissipated with the phase 
volume shrinking to zero along with the evolution of time, so that all trajectories in the phase space 
will ultimately be attracted to the point set where equals to zero, and the point set is called as 
attractor. The three parameters used by Lorenz are 10, 28, 8 / 3σ γ β= = = , and these equations are 
nonlinear differential equations without analytical solutions but numerical solutions. Moreover, the 
numerical solutions of these equations are very sensitive to the selected parameters and the initial 
conditions. Changed parameters and initial conditions may let the system to be stable or chaotic. 
For instance, any two motion trajectories which begin from two much closed points at the initial 
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moment would ultimately separate very far from each other. The strange attractors in the Lorenz 
system are ergodic, any motion trajectory almost all passes through the points on the strange 
attractor. The phenomenon described above is also known as “chaotic motion” which is highly 
similar to the characteristics of atmospheric turbulence motion. However, the atmosphere itself has 
chaotic characteristics, even if we employ the most accurate numerical models and the most exact 
initial conditions, we would still get two completely different weather forecast states after a certain 
time point began from the same model and initial conditions, and this is called as the predictability 
of the atmosphere. Therefore, Lorenz63 nonlinear chaotic system implicates some complicated 
weather changing mechanism, and the whole system presents an appearance shape of butterfly. 

Numerical Experiment 
In the experiment, firstly integrate Eq. 4 forward 1500 time steps by using a fourth-order 

Runge-Kutta (R-K4) method. In order to express the research content more clearly, we assume that 
only a single station is selected to simulate, the time step length is 0.01t∆ = , with initial 
background condition for the Lorenz system: 0 (2,3,2.5) δ= +u , where δ is a Gaussian noise which 
makes the initial condition is closer to the real observation. For training data set, 900 data are 
considered, and 100 data are employed for validation. Our ultimate goal is to produce accurately 
evolving state of the Lorenz system by ELM algorithm according to the background field. 

Subsequently, we select the Lorenz integral values at 300th, 500th, 600th, 800th and 1000th time 
steps as training and testing samples, and we name this experiment group as EX1. We also consider 
the validity of the ELM when the noise becomes larger (namely10*δ ) and call this experiment 
group as EX2. 

Figure 3 shows the forecast errors of variables x, y and z at 1000th time step between the ELM 
forecast filed and the truth in test data set in experiment group EX1. It is obvious that the errors are 
very small, and the results can also be confirmed by the distribution of the truth and the ELM 
generated forecast field in Fig. 4, where the forecast and true values are basically in the state of 
superposition for the 100 samples. These results present the accuracy of ELM algorithm used in 
Lorenz system is very high. 

 
Fig.3. Forecast errors of variables x(a), y(b) and z(c) at 1000th time step between the ELM forecast 

filed and the truth in test data set in experiment group EX1 
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Fig.4. The distribution of the truth and the ELM forecast field of variables x(a),y(b) and z(c) in 

experiment group EX1 
The running times of integrating 1000 steps in EX1 and EX2 are both shown in Table 1. The 

R-K4 method is nearly 2~4 times slower than ELM algorithm. However, with the evolution of time 
or the increase of data noise, the effect of ELM on Lorenz63 system will have a sharp decline, and 
there is a loss of accuracy after the 1000th time step, mainly because of the chaos in the Lorenz 
system, and thus leading to the unpredictability for a long period in highly nonlinear chaotic system. 
These conclusions are shown in the Table 2. 
Table 1.  The running times of integrating 1000 steps for the lorenz63 equations by using r-k4 and 

Elm 
            

Time(s) 
Experiment 

R-K4 ELM 

EX1 0.04292 0.01874 
EX2 0.04176 0.01739 

Table 2.  The root mean square error of forecast field are generated by ELM method at 300th, 
500th, 600th, 800th and 1000th time steps 

    RMS 
Experiment 300 500 600 800 1000 

EX1 1.7098e-09 4.5275e-09 2.1309e-09 5.5320e-07 1.9536e-05 

EX2 5.3854e-07 1.0714e-06 8.9152e-05 0.0017 0.7396 

Table 3. the correlation coefficients of variables x, y and z between forecast values and test data 
test    

simulated x y z 

x 0.999897 0.999836 0.985152 

y 0.999907 0.999886 0.984076 

z 0.984562 0.983415 0.999980 

815



 

As is known to all, correlation coefficient is a measure of the dependence between variables, 
which indicates the degree of the fitting of a model. Finally, we verify the correlation coefficients of 
variables x, y and z between the forecast values and the test data. Table 3 shows the degree of fitting 
for each variable is very high, which also shows the strong correlations among the variables in 
lorenz63 system. The above results demonstrate the superiority of ELM algorithm in aspects of 
simulating atmospheric nonlinear chaotic systems. 

Conclusion 
This paper firstly introduces the ELM algorithm and it can be successfully used as a novel idea 

for solving the nonlinear differential equations in the area of atmosphere. The ELM technique was 
tested in Lorenz63 nonlinear chaotic system and presents a faster calculation speed and optimistic 
calculation accuracy in the numerical experiments except when the data noise is not really big. We 
will seek to apply the ELM algorithm in real atmospheric models in the future. 
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