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Abstract. Kuhn-Munkres algorithm is one of the most popular polynomial time algorithms for solving clas-
sical assignment problem. The assignment problem is to find an assignment of the jobs to the workers that 
has minimum cost, given a cost matrix X ∈ Rm×n, where the element in the i-th row and j-th column rep-
resents the cost of assigning the i-th job to the j-th worker. the time complexity of Kuhn-Munkres algorithm 
is O(mn2), which brings prohibitive computational burden on large scale matrices, limiting the further usage 
of these methods in real applications. Motivated by this observation, a series of acceleration skills and paral-
lel techniques have been studied on special structure. In this paper, we improve the original Kuhn-Munkres 
algorithm by utilizing the sparsity structure of the cost matrix, and propose two algorithms, sparsity based 
KM(sKM) and parallel KM(pKM). Furthermore, numerical experiments are given to show the efficiency of our 
algorithm. We empirically evaluate the proposed algorithm sKM) and (pKM) on random generated largescale 
datasets. Results have shown that sKM) greatly improves the computational performance. At the same time,
(pKM) provides a parallel way to solve assignment problem with considerable accuracy loss.

Introduction

The assignment problem is one of the fundamental combinatorial optimization problems. It consists of finding 
a maximum weighted matching in a weighted bipartite graph. It is important both theoretically and practically. 
On one hand, it is a special case of more complex problem, such as the generalized assignment problem, 
matching problem in graph, minimum cost flow problem. On the other hand, many real world problems can be 
categorized in assignment problem, such as worker assignment problem.

The study of the assignment problem is quite mature. One of the most popular polynomial time algorithms 
is the Kuhn-Munkres algorithm, which was developed and published in 1955 by Kuhn [1]. As the assignment 
problem is linear programming in nature, the primal simplex method, and primal-dual simplex method for 
linear programming are also adapted to the assignment problem [2]. Kuhn-Munkres algorithm is also called 
“Hungarian method” because it was largely based on the earlier works of two Hungarian mathematicians in 
1916 [3] and 1931 [4], even before the definition of linear programming.

Theoretically, the Kuhn-Munkres algorithm is guaranteed to reach the global optimal. There are a lot of 
study and modifications of Kuhn-Munkres a lgorithm. Bourgeois extend Kuhn-Munkres algorithm to rectan-
gular arrays [5] in 1971. The Kuhn-Munkres algorithm is the first p roved p olynomial a lgorithm. Munkres 
observed that it is (strongly) polynomial [6] in 1957. Further, Edmonds and Karp [7], and independently 
Tomizawa noticed that it can be modified to achieve an O(n3) running t ime. For more details, the interested 
readers are referenced to [8, 9, 10, 11, 12, 13].

Formally speaking, given a cost matrix X ∈ Rm×n, where the element in the i-th row and j-th column 
represents the cost of assigning the i-th job to the j-th worker, the time complexity of newest Kuhn-Munkres 
algorithm is O(mn2), which brings prohibitive computational burden on large scale matrices, limiting the 
further usage of these methods in real applications. Algorithms suitable for large scale computing are more 
and more important. In history, a serial of work take advantage of special data structure. In 1987, Jonker et. 
al. [14] introduced three sets TODO, READY and SCAN, and their experiments show sound speed up for sparse 
problems. To decrease compuational time cost, Bertsekas et. al [15] discussed three possible synchornous 
and asynchronous implementations of the Kuhn-Munkres algorithm. They mainly focused on generate the
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augmenting path in parallel, and differ in the work to be done by a processor before their latest computation
been dealt. However, as the Kuhn-Munkres algorithm steps are highly related to each other, their algorithms
have to discard any path conflicts with previous paths. And their numerical experiments also show very low
parallel ratio.

In this paper, we focus on utilizing special data structure in large scale problems. With the assumption that
the data is sparse, we designed two algorithms sKM and pKM based on the original Kuhn-Munkres algorithm.
The outline of the following paper is organised as follows. We describe the formulation of the assignment
problem and the original Kuhn-Munkres algorithm in §2. Our sparse and parallel algorithms are depicted in
§3. At last, we give the numerical experiments to shown the efficiency of out algorithm.

The Assignment Problem

Consider that there are n jobs to be done with m workers available. Without loss of generality, we assume
n ≤ m. Any worker could be assigned to perform one of these jobs, each pair (job, worker) has a time cost for
him to perform the job. Our goal is to complete all these jobs while minimizing total time cost, while assigning
each worker to exactly one job and vice versa. Specifically, the assignment problem can be formulated to the
following optimization problem:

min
∑n

i=1

∑m
j=1 cij ∗ aij ,

s.t.
∑n

i=1 aij = 1, 0 ≤
∑m

j=1 aij ≤ 1,

aij ∈ {0, 1}
(1)

where C ∈ Rn×m is the cost matrix, cij is the cost of worker i to perform job j, A ∈ Rn×m is the resulting
binary matrix, aij = 1 if and only if the i-th worker is assigned to the j-th job, otherwise aij = 0.

The problem (1) could be considered as a mixed integer programming, which is NP-hard in general [16].
However, noting that the constraint matrix is totally unimodular, we can ignore the 0-1 constraints aij ∈ {0, 1}.
As a result, the problem (1) is reduced to a linear programming, which is polynomial solvable.

From a different perspective, the assignment problem can also be considered as the maximum matching
problem in graph theory, or bipartite graph in this case [17]. Let each edge between the i-th worker and j-th
job has weight of cij . Then our task is to find minimum-weight matching in the graph, and the matching should
consist of n edges, as the bipartite graph needs to be complete.

Kuhn-Munkres Algorithm

There are many implentation versions of Kuhn-Munkres algorithm with time complexity O(n3): graph
[18], matrix [19]. In the following, without loss of generality, we shall discuss maximum assignment problem
in a graph perspective. Furthermore, it is easy to transform the maximum problem to the minimum one, for
example, by applying the following operation on the cost matrix Cij = maxCost − Cij , where maxCost =
maxi,jCij .

Considering a complete bipartite graphG = (V,E) where V = X
⋃
Y,E ∈ X×Y , andX

⋂
Y = ∅. Note

the weight of edge (x, y) as w(x, y). A vertex v’s neighborhood is the set JG(v) with all the vertices that share
an edge with v, and a set S’s neighborhood is the set JG(S) with all vertices that share an edge with a vertex in
S. Define the labels l(x) for each vertex in graph, which can also be seen as dual variables of the problem (1),
with each label of a vertices corresponding to its only matching constraint. A feasible labelling is a function
l : V → R satisfies the following condition l(x) + l(y) ≥ w(x, y),∀x ∈ X,∀y ∈ Y . Considering a matching
M(M ⊆ E), vertex v is called matched if it is a vertex in M , otherwise it is called exposed (free, unmatched).
Here we denote by Gl the subgraph of G which contains those edges where l(x) + l(y) = w(x, y). Gl is a
spanning subgraph of G, and includes all vertices from G. Gl only includes those edges from the bipartite
matching which allow the vertices to be perfectly feasible.

Therotically, if M∗ is a perfect matching in the equality subgraph Gl, then M∗ is a maximum-weighted
matching in G. We now show that there are no perfect matching with greater weight than M∗. Suppose M is
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Algorithm 1 Original Kuhn-Munkres algorithm
Input: An bipartite graph G = (V,E), and weight w(x, y).
Output: Optimal perfect matching M .

Step 1: Generate initial labelling l and matching M in Gl.
Step 2: If M perfect, stop. Otherwise pick free vertex u ∈ X . Set S = u, T = ∅.
Step 3: If Jl(S) = T , update labels (forcing Jl(S) 6= T )

αl = min
s∈S,y/∈T

{l(x) + l(y)− w(x, y)} (2)

l̂(v) =

 l(v)− αl, v ∈ S
l(v) + αl, v ∈ T
l(v), otherwise

Step 4: If Jl(S) 6= T , chose y ∈ Jl(S)− T :

• If y free, u− y is augmenting path. Augment M and go to 2.

• If y matched, say to z, extend alternating tree: S = S ∪ z, T = T ∪ y. Go to 3.

any given perfect mathcing, then

w(M) =
∑

x,y∈M
w(x, y) ≤

∑
x,y∈M

{l(x) + l(y)}

=
∑
x

l(x) +
∑
y

l(y) =
∑

x,y∈M∗

{l(x) + l(y)}

=
∑

x,y∈M∗

w(x, y)

= w(M∗)

Therefore, M∗ is a maximal perfect matching, and the Kuhn-Munkres algorithm is guaranteed to reach the
global optimal.

Numerically, the time complexity of Algorithm 1 isO(mn2), wherem is the number of elements inX , and
n is the number of elements in Y .

Sparse and parallel Kuhn-Munkres algorithms

In this section, firstly we shall present two algorithms: sparse Kuhn-Munkres algorithm sKM and parallel Kuhn-
Munkres algorithm pKM, then we will combine these two algorithms into spKM.

The sparse Kuhn-Munkres algorith sKM

We make the following assumption on the above formulation throughout two algorithms in the paper, sparse
Kuhn-Munkres algorithm sKM and parallel Kuhn-Munkres algorithm pKM, then we will combine these two
algorithms into spKM. Specifically, each node x ∈ X is linked to partial nodes y ∈ Y .

Assumption 1:The original graph G is sparse.
In practice, the assumption is always hold true, especially for large scale problems. For instance, there

are 10,000 jobs and 15000 worker and some workers are only capable of doing his most skilled jobs, so one
job could be potentially assigned to at most 200 workers, then assignment cost matrix is relatively sparse,
about 5‰in practice. It should be noted that operations in KM algorithm are mostly (or could be equally
transformed to) row-wise and column-wise, there are seldom random access operations. As a result, the
sparsity and the memory access mode could make the sparse KM algorithm greatly reduce complexity of the
KM algorithm.

At first, we implement an O(mn2) version of KM algorithm for dense matrix, and analyze the memory
access operations in the algorithm. We find that these operations can be equally transformed to a row-wise
and column-wise manner, which would take great advantage of efficient through a crosslinker data structure.
The crosslinker is used here to store the data, and the data is manipulated along the links among the nodes.

824



Algorithm 2 The parallel Kuhn-Munkres algorithm pKM with t threads
Input: The weight matrix W ∈ Rm×n with m ≤ n
Output: The maximum perfect assignment for m workers.

Step 0: Reformulate the distance W into its band structure style matrix A.
Step 1: Split all the columns of A into t blocks uniformly.
Step 2: Distribute all rows into t blocks corresponding to the rows.
Step 3: Solve the subproblems in parallel by Algorithm 1.
Step 4: Check for uniqueness of each job, if more than two workers share the same job, chose a worker that has the
maximal profit; output the results.

The crosslinker is relatively efficient to manipulate data with sparsity property, especially the operations are in
column-wise or row-wise way.

The complexity analysis of sKM is analysed as follows. Define the number of nun-zero elements as

τ = # of non-zero elements.

With the sparse assumption, we show the time complexity of Algorithm sKM is O(mτ). Denote a iteration
as finding an augmenting path. Since at least one more match can be found each iteration, the total iteration
number is O(m). A complete iteration begins at Step 2, ends at first item of Step 4, and repeats between Step
3 and Step 4, herein the main computation complexity lies in updating Equation (2). Firstly, the computation
complexity to initialize αl is O(τ), as there are no more than τ components. Noting that S and T is monotone
increasing, the total changes of elements are no more than τ . Hence, the complexity each iterate to update αl

is O(τ). Therefore, the total complexity is O(mτ).

The parallel Kuhn-Munkres algorith pKM

Suppose there are m jobs in X , and n workers in Y . Further, without loss of generality, we assume that
m ≤ n.

Definition 4.1 The breadth bd of a matrix A ∈ Rm×n is defined as

bd := max
i,j
|j − i|, s.t. ai,j 6= 0. (3)

Theoretically, for any sparse matrix, if we arrange the row with the most zeros at the bottom, and rearrange
its zeros at the left part; repeat this procedure for the rest of matrix while keep the arranged zeros unchanged.
At last, the left-bottom of the matrix will be zeros. Similarly, we can rearrange zeros to the right-up part of the
matrix.

For the assignment problem, the essence of band structure is to put the similar jobs together. Here, we
claim two jobs are similar if they share many common workers.

Two notices should be claimed before we proceed. Firstly, for each subproblem in Step 3 of Algorithm 2,
it remains that jobs are less than workers. Secondly, if the reformulated data has very strong band structure, or
even block diagonal, then we can split the original problem in k subproblems, and then solve each subproblem
by Algorithm 2 with t computation processing unit. In this case, we can solve the original problem by as many
core as possible.

The time complexity of Algorithm 2 is O(m(n/t)2). This can be followed from the fact that there are in
total t subproblems computed in parallel, for each subproblem, there are m jobs, n/t workers, hence each
subproblem costs O(m(n/t)2).
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Algorithm spKM

Considering a sort of cases with great many jobs and relatively few workers, or formally speaking,m << n,
where m is the number of workers and n is the number of jobs. There is high parallel potential to solve this
kind of assignment problems.

We propose sparsity based parallel KM(spKM), which is achieved by replacing Algorithm 1 by sKM in Step
3 of Algorithm 2. This algorithm utilizes the sparse and band structure of the assignment problem at most. The
paralleled sparse KM consists of three stages: divide, subproblem solving by sparse KM and results merge. It
should be noted that the merge process will not degrade the optimization of any subproblem.

Experiment of Sparse KM

We estimate the performance of the implemented sparse KM algorithm in this subsection, and compare
it with the original KM algorithm under the sparse and dense conditions. We randomly generate the sparse
job-worker cost matrix and use it to estimate the efficiency of the sparse KM on data with different scale. And
our code will be provide to public after publish.

Table 1: The speed up of sparse KM on sparse matrix
scale sparse rate time of sparse KM time of KM speed up

1000 0.004994 0.08 11.48 143.50

1100 0.0045405 0.09 15.3 170.00

1200 0.0041625 0.11 19.93 181.18

1300 0.0038426 0.13 25.79 198.38

1400 0.00356837 0.16 32.28 201.75

1500 0.00333067 0.19 39.02 205.37

1600 0.00312266 0.21 47.01 223.86

1700 0.0029391 0.23 57.22 248.78

1800 0.00277593 0.25 67.64 270.56

1900 0.00262992 0.28 78.55 280.54

Table 2: The effective time rate of spKM on sparse cost matrix with the processing unit is fixed
scale sparse rate time solving time total effective time rate

6000 0.00192219 0.42 0.61 0.6885

7000 0.00161228 0.42 0.62 0.6774

8000 0.00138843 0.42 0.66 0.6364

9000 0.00121916 0.43 0.67 0.6667

10000 0.00108667 0.43 0.68 0.6324

In Table 1, we randomly generate cost matrix with scale of 500 × 500 to 1900 × 1900 with sparse rate
changes from 2 ‰to 4%, and the speed up is the time of original KM divide the time of sparse KM, as expected
the speed up is positively correlated to the reciprocal of the sparse rate. We further estimate the effective time
rate of sparsity based parallel KM spKM on sparse cost matrix with scale of 6000 × 6000 to 10000 × 10000,
we fix the processing unit upto 6 and the task size at least of 4000.

It should be noted that the performance of sparse KM is highly related to the sparse rate of the cost matrix.
When the cost matrix is dense the sparse KM algorithm will perform worse than original KM algorithm as the
sparse KM is built on crosslinker which will perform badly in dense cases.

Discussion

Kuhn-Munkres algorithm is one of the most popular polynomial time algorithms for solving classical assign-
ment problem. The assignment problem is to find an assignment of the jobs to the workers that has minimum
cost, given a cost matrix X ∈ Rm×n, where the element in the i-th row and j-th column represents the cost of
assigning the i-th job to the j-th worker. the time complexity of Kuhn-Munkres algorithm is O(mn2), which

826



brings prohibitive computational burden on large scale matrices, limiting the further usage of these methods
in real applications. Motivated by this observation, a series of acceleration skills and parallel techniques have
been studied on special structure. In this paper, we improve the original Kuhn-Munkres algorithm by utilizing
the sparsity structure of the cost matrix, and propose two algorithms, sparsity based KM(sKM) and parallel
KM(pKM). Furthermore, numerical experiments are given to show the efficiency of our algorithm. We empiri-
cally evaluate the proposed algorithm sKM) and (pKM) on random generated largescale datasets. Results have
shown that sKM) greatly improves the computational performance. At the same time, (pKM) provides a parallel
way to solve assignment problem with considerable accuracy loss.
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