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Abstract. Considering the exclusive policy and poor energy benefits for multicore processor by 
Ondemand algorithm, a global DVFS (Dynamic Voltage and Frequency Scaling) algorithm DTACU 
based on piece energy model is proposed. In order to translate multicore problems to single core 
problems, an equivalent energy model, called piece energy model, was set up. It divided the time into 
several periods in which no task arrive or finish in each core, hence the multicore processor can be 
seen as a single core processor. Based on theoretical research on energy consumption and current 
published papers, analytical expressions of equivalent single core energy consumption were deduced. 
DTACU was proposed through analyzing the source of energy consumption in expression and 
implemented based on Userspace. Taking the number of active cores and dynamic thresholds into 
account, DTACU only change CPU speed during one period to both reduce energy consumption and 
satisfy the demand of task deadline. The final result of experiments show that DTACU can achieve 
lower energy consumption without sacrificing system performance compared with Ondemand. 

Introduction 
Nowadays, reducing the energy consumption is considered as one of the major research topics for 

computing system, especially for mobile computing system. Comparing with low-power component 
design and manufacturing technology, processor low-power design at system-level is also 
meaningful. Dynamic Voltage and Frequency Scaling (DVFS) is one of feasible means of reducing 
energy consumption. It is a hardware technology used to dynamically scale up or down the frequency 
or voltage of processor according to the governor policy and the workload demand at the cost of an 
increased latency.  

For multicore processor, there are two main means of DVFS control, namely local DVFS and 
global DVFS. Local DVFS changes the clock frequency per core, while global DVFS makes these 
changes for the entire chip. Recently, clustered DVFS, which uses multiple of on-chip regulators 
drive a set of DVFS domains, was proposed for multicore processors[1]. Theoretically, local DVFS is 
the most effective way to reducing energy consumption. However, in practice global DVFS is the 
most common in processor design, since it is cheaper to implement, but there are still some issues on 
global DVFS, such as low energy benefits and complex algorithms. 

In this paper, we explore and propose a global DVFS algorithm DTACU (Dynamic Threshold and 
Active Cores based on Userspace) by analyzing the relationship between frequency and energy 
consumption based on piece energy model. Section 2 introduces the related works about global 
DVFS. After presenting the detailed process of setting up the piece energy model, the description and 
implementation of DTACU are presented in Section 4. The results of experiment are shown in section 
5, and final conclusion is given in section 6.  

Related Works 
Many DVFS power management policies were proposed in the past. Some of them have been 

integrated in many kinds of processor, but there are no known optimal algorithm that minimize the 
energy consumption on global DVFS. Jean-Philippe et al. [2] study reactive DVFS control for 
multicore processors and realize FoREST, a new DVFS runtime controller independent form any 
performance model, in multicore system. Although FoREST does not use any performance model, it 
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must under the user-defined slowdown constraints. In other words, it may generate a huge latency 
that is based on the programs running on the cores. Semeraro et al. [3] proposed to periodically reduce 
CPU frequency until an impact on execution time is suspected from hardware observation, but the 
proposed mechanism is not able to control its impact on slowdown as opposed to more recent 
solutions. Besides, some of algorithm focus on reducing the energy consumption of a specific 
program [4]. The optimal global DVFS algorithm should apply to all programs, so vifrification to 
host programs is the most basic elements for global DVFS. 

Piece Energy Model Introduction 

Multicore Power model. 
The power consumption, P, of a CMOS-based multicore processor is related to its system clock 

frequency f and operating voltage V as 2P V f∝  . Also, the relation V f∝ holds for these 
processors [5]. In this paper, the model follows the commonly accepted modeling assumptions from 
the literature. Because of widespread use of CMOS technology, so the power consumption of a 
multicore processor, it was agreed, consists of the static power consumption and dynamic power 
consumption. Static power consumption refers to the power consumption from the leakage current. 
The static power of a processor is often approximated by a linear function of the voltage in other 
literature, so it can be expressed as 2sP cV c= + . It is a common assumption that the voltage is 
linearly related to the clock frequency in the power management literature [6], so we simplify the 
static power as 1 2sP c f c= + . 

Dynamic power is the power caused by capacitance charging and discharging when signals 
changing in the circuit, which is a major part of circuit power. In this paper, we assume that dynamic 
power is only used when a core is active. Under this assumption, the dynamic power can be expressed 
as 2

dP mCV fα= ,  where C denotes load-capacitance in the circuit, α  is technology dependent 
constant and m is the number of active cores. Just because we assume that the voltage is linearly 
related to the clock frequency, so dynamic power can be changed as 3dP mc f β= . The total power 
model of the multicore processor is given by:  

1 2 3P c f c mc f β= + + ,                                                                                                           (1) 
which is only a function of system frequency. This is what we expect, because we will analyze 

clock frequency and show our frequency selection policy in the next chapter. After getting power 
model, we will introduce piece energy model to calculate the energy consumption of multicore 
processors.  

Piece Energy Model. 
We obtain the total energy consumption by integrating power over time, namely when exactly m 

cores are active during the time interval [ 1t , 2t ], the energy consumption for this time interval is 

( )2

1

E
t

t
P t dtϕ= ∫ .                                                                                                                          (2) 

In order to obtain a more common, intuitive and simpler energy consumption model for multicore 
processor, we have several assumptions which are feasible for our model. First, we assume that the 
tasks are large enough, so we can neglect the overhead of changing clock frequency. Second, task 
schedule, we have mentioned before, is given and feasible, so we do not formalize the definitions of 
tasks. Third, we assume that the clock frequency is only changed when tasks start or finish. This 
assumption is based on observation that the number of clock frequency changes of the optimal policy 
grows slowly with the number of tasks and we will discuss it later.  

Before we introduce the model, we should know a definition of piece, which is a maximal interval 
[a, b] that no task starts or finishes in (a, b). Under this definition, we can see the total energy 
consumption as several pieces of energy consumption, so we call such energy model as piece energy 
model. 
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Each task has its arrival time and deadline, therefor it should be started at arrival time and finished 
before the deadline. To easily understanding, we show an example in figure 1 to explain the insights 
of the piece model. From the example we can see that there are 7 tasks running on 4 cores in the 
processor. The tasks have precedence constraints, and the amount of work of the tasks 1 T , 2T … 7T is 
given. Each task has its deadline respectively, thus there are 5 pieces in the example. A given 
schedule, it will be noticed, uniquely subdivides into K pieces, and kP  denotes the k-th piece.  

P1 P2 P3 P4 P5

T1 T2

T3

T4

T5

T6

T7

Core 1

Core 2

Core 3

Core 4

Clock cycles  
Fig. 1. An example of tasks schedule 

Let km  denote the number of active cores during piece kP  and kw  denote the total workload in the 
period of kP . Note that the number of active cores during  kP  can’t change, this is because no task 
starts or finishes during this piece. Hence  k km w  work is executed for piece kP . We can obtain total 
work W of the application by summing the work of all tasks, and it can be expressed by 

1
W K

k kk
m w

=
=∑ . For the example shown in figure 1, it takes 7 clock cycles to execute 7 tasks, which 

the total workload W equals to 17. 
We use b

kt  and c
kt  to denote the start time and complete time respectively for each piece kP . 

Because of /k k kt w f=  and the power model we have obtained before, thus the total energy 
consumption can now be expressed in terms of pieces as follow: 

( ) 1
2 3

1

E
K

c b
k k k

k

c t t m c f wβ −

=

= − +∑                                                                                          (3) 

where ct  represents the complete time of the last piece and bt  represents the start time of the first 
piece. It can be seen from the above equation that the total energy consumption also consists of the 
static and dynamic energy. 

It has been proven that when at time 1t  there are n active cores and at time 2t  there are m active 

cores, the ratio between the optimal clock frequencies is /m nβ . We let n equals to 1 then we get 


k k kf f mβ= . Similarly, k k kw w mβ= . We substitute the variables for clock frequencies and work to 
energy equation and km  is disappear. Thus, the multicore energy consumption model becomes an 
equivalent single core model. The substitution into the energy function is given as follows.  

( ) ( ) 

1

2 3
1
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K

c b
k k

k

c t t c f w
β −

=

= − +∑                                                                                         (4) 

DTACU Description and Implementation 

Equivalent Model Analysis. 
Frequency changes are not always effective to power consumption, because energy saving 

achieved by frequency change is almost as large as the energy consumption by DVFS in some case. 
We can see from the total energy consumption function that dynamic energy consumption increases 
as the number of frequency change increase. Hence, when to change frequency for global DVFS is an 
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important problem. Because we subdivide tasks into pieces, and there is no active core changes 
during the piece, so it is similar with an equivalent single core. From the model we can see that it is 
crucial to global DVFS that the clock frequency is only changed when piece start in multicore 
processor. Although flexible frequency change can save much more energy by rational use of DVFS, 
this principle is more feasible considering the energy consumption and risks of DVFS。 

In the total energy consumption model, it seems that there is no influence between frequency and 
static energy. Conversely, frequency indeed influences the static energy. Because tasks, it is true, can 
be completed before the deadline. This means staticE  is the worst case and actual static energy 
consumption may less lower. So an appropriate increase in frequency would get a notable energy 
saving that may larger than energy consumption by dynamic power. 

DTACU Description.  
DTACU try to reduce the number of frequency change based on the analysis above. The frequency 

would be changed after the first interval of the piece. During the interval, CPU utilization can be 
obtained and appropriate frequency can be confirmed. Because of no change of the number of active 
cores in the piece, the CPU utilization can represent the demand of multicore tasks in the interval.  

Note that the number of active cores changes for each piece, so active cores should be taken into 
consideration of global policy. The frequency would be ramped up to the maximum if the CPU 
utilization exceeds the 90% when all cores are active. This is a general agreement considering user 
experience. However, it is unnecessary to increase the frequency to the maximum when not all of 
cores are active because frequency variation is not linear. 

 Based on aforementioned model and analysis, we put forward three principles of DTACU as 
follow: 

(1).The frequency is only changed when active cores changing; 
(2).Different policies for different number of active cores; 
(3).Different threshold utilizations depending on the number of CPU core. 
When all cores are active, we can regard CPU as a single core, so the total CPU utilization is a 

representation of the system demand and we do not need to consider the single core utilization at all. 
In other cases, not all cores are active, single core utilization becomes a determining factor, so the 
DTACU needs to deal with different situations respectively. For dual-core processor, the total 
utilization is 50% when one core is full load and another is idle. If the same task was running on 
dual-core, then the total utilization is still 50%, but the single utilizations of both cores are 50% as 
well, so total utilization is not meaningful for not-all core active cases. On the other hand, we define 
different threshold utilizations depending on the number of CPU core in order to achieve better 
schedule performance. Basically, 50% or 75% are usually chose for up-threshold and 40% for 
down-threshold based on the Ondemand [7]. 

DTACU Implementation. 
DTACU was implemented based on Userspace governor, which allows user to manually set 

processor frequency in Linux [8]. In order to change CPU frequency, as an example, cpufreq that 
inside the kernel of Linux allows the user to set the desired frequency at any time.The pseudocode of 
DTACU is shown below, where the up-threshold and down-threshold will be determined by the 
number of CPU core.  

Get available frequency 
 every internal after new piece 
  if(all cores are active) 
   if(total utilization > 90%) 
    increase frequency to MAX 
   if( 90% > total utilization > up-threshold) 
    increase frequency to upper level 
   if(total utilization < down-threshold) 
    decrease frequency to lower level 
  else  

if(not all cores are active) 
   if(single utilization > up-threshold) 
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    increase frequency to upper level 
   if(single utilization < down-threshold) 
    decrease frequency to lower level 

Experiments 
DTACU is implemented for x86_32 processors on Linux Userspace governor. The experiments 

were run on Intel Core i3-2350M quad-core processor, running Linux 3.5.3. There are ten available 
frequencies range between 0.8GHz and 2.3GHz except for the frequency below critf . The benchmark 
programs is the SPLASH2 running in C class datasets, which consists of twelve programs.  

In order to change the frequency for each piece, we predefine the sequence of the programs 
running on the different cores and it will send a signal to DTACU when one program is done. Thus, 
DTACU can distinguish each piece and start work to determine the frequency. We use FTA22J-12, a 
power usage monitoring tool of Monsoon Solutions Company, to monitor the power of processor.  

Two groups of experiments were conducted. Note that we predefined two kinds of program 
sequence for each group of experiment, so we firstly run the experiment with the up-threshold 50% 
and 75% respectively and down-threshold 40% uniformly under the qual-core situation by disabling 
two of cores in processor. We capture the power spectrum during the first 100 seconds, and the 
sample interval is one second. The results are the median value of 5 executions, as shown in Figure 3, 
and compared to Ondemand, the default Linux DVFS control policy.  

 
(a) Ondemand                                              (b) 50% up-threshold 

    
(c) 75% up-threshold                                      (d) energy consumption 

Fig. 3. Power spectrum and energy consumption under dual-core situation 

From the figure above we can see that the curve of Ondemand is rougher than which of our policy 
no matter what value up-threshold is. Besides, the average power values of DTACU are smaller than 
which of Ondemand. There is no obvious difference between 50% up-threshold and 75% 
up-threshold, and the average power values are 8.05 w and 8.10 w respectively. 

We conduct the similar experiments with the same parameter of 50% and 75% for the qual-core 
processor. Interestingly, the result is different to the dual-core situation and the up-threshold becomes 
a critical factor to determine the power consumption. This feature is reflected in Figure 4 as the power 
variation of 75% up-threshold is gentler than others.  

 
(a) Ondemand                                           (b) 50% up-threshold 
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(c) 75% up-threshold                                     (d) energy consumption 

Fig. 4. Power spectrum and energy consumption under qual-core sintuation 
DTACU consumes less energy compared with the Ondemand policy in all four cases. This is 

because Ondemand policy takes many times of frequency change during the experiment. Besides, it is 
a coarse-grained policy that only based on the total threshold user predefined. Under the qual-core, 
comparing with Ondemand, the policy with 75% up-threshold can achieve 10.44% lower power 
consumption but 5.10% for the policy with 50% up-threshold.  

Conclusion 
This paper puts forward a global DVFS algorithm DTACU for multicore based on the piece period, 

in which there is no active cores change, so we can see it as a single core. In the implementation, 
taking the number of active cores and dynamic thresholds into account, DTACU only change CPU 
speed during one period to both reduce energy consumption and satisfy the demand of task deadline. 
Although DTACU is experimented under assumptions, the insights of the algorithm are also useful 
for future work. 
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