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2. Model parameter description 

2.1 The risk 
The paper regard the risk ′ as a comprehensive index multiplied by several risk factors simply. 

And the risk ′ is a constant coefficient including: 
The Loss of Fire Deviation: 
Refer to the central-limit theorem, the relative position ,  between the target position of 

lasers and the central position of space debris subject to the two-dimensional normal distribution, 
that is 

~ 0,0, , , 0  
Taking the loss generated from the fire deviation of lasers into consideration, we get the loss 

function  is: 
 

Then we get the expectation p1 of the loss of fire deviation: 
 

The Failed Rate of Launching Satellites: 
It’s well-known that the failed rate of launching satellites depends on the current level of science 

and technology. Then, we regard it as a constant coefficient which is denoted by . 
In conclusion, we get the risk ′ is: 

′  
2.2 The income 

Giving a definition of the incomes that the incomes is multiplied by the number of the eliminated 
space debris and the reward for each piece of eliminated space debris. Then we have: 

 

where  is the reward that firms can gain from each piece of space debris. 
The incomes of each piece of small space debris could be same because the number and the size 

of the small space debris are roughly same. 
2.3 Launch costs 

It’s acknowledged that the cost of launching is related to the cost of the fuel and the cost of the 
equipment. 

The cost of fuel is related to the orbit altitude. The unit cost of launching is: 

2
 

where k is the unit price of fuel and E is the energy provided for launching into the orbit. Each 
laser costs is almost 20 million dollars and each of satellites with rocket costs 180 million dollars 
approximately. 

Based on the data, the unit cost ′	of space shuttle is 120 million dollars approximately [4]. 
The emitting cost of small space debris is 	= , and the emitting cost of large space 

debris is ‘ . 
where m is the number of the satellites launched. 

3. The Model of Disposing of Small Debris 

Because of the large interval between the different orbits and the areas out of laser-shooting 
range, we can get the overall optimal scheme by optimal schemes of each orbit without considering 
orbital transfer. So we make the set  show the optimal scheme of an orbit and make the set 

 show the final optimal scheme. 
3.1 Motion State in Two-Body Problem 

Assume that a single object and the Earth form a two-body problem without considering the 
effects of other objects. For the object, the simplified equation of motion in the basic coordinate 
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about 45°, the semi-major axis of elliptical orbit is 9.55910 10 m and the semi-minor axis of 
elliptical orbit is 9.21316 10 m. 
3.2 Coordinate Dimensionality Reduction  

As for the two-body problem, it’s proved that satellites motion in the same plane. So the motion 
equation is the plane S: 

0 
Keep the origin of the coordinate system unchanged and get the equation by rotation 

transformation in the new coordinate system is: 
S : z 0 

First of all, keep the y-axis unchanged and do rotation transformation: 
cos 0 sin
0 1 0
sin 0 cos

 

where α is rotation angle. 
Then keep the x-axis unchanged and do rotation transformation: 

1 0 0
0 cos sin
0 sin cos

 

where  is rotation angle. 
Then keep the z-axis unchanged and do rotation transformation: 

cos sin 0
sin cos 0
0 0 1

 

Above all, we can know that: 
′
′
′

 

Obviously, if the coordinate of space debris , ,  is known in the original coordinate system, 
it’s easy to get the new coordinate ′, ′, 0  in the new coordinate system. That is, the 3D 
coordinate , ,  could be reduced into 2D coordinate ′, ′ . 
3.3 Model Establishment 

In addition, based on the motion model above, we optimize the limited conditions to the 
laser-shooting distance in the improved model. 

Object Function: 
′

				 1,⋯ ,  

where, 	 is the launch costs, ′ 	 is the risk, 	 is the income and 	 is the scheme’s 
comprehensive evaluation index. 

Restrictions: 
    
 The number of space debris in orbit finally should less than the maximum capacity of 

orbital debris: 
 

 The maximum elapsed time  subjects to: 
 

     where 	is the total running time of the satellite and 	is the maximum satellite running 
time. 

 Space debris only can be eliminated one time. 
 The incomes brings more value than the costs: 

 
Parameter Description:  
Space debris’s coordinate in the new coordinate system some time: 
1. Get the 3D coordinate , ,  in the original coordinate system at observation time by 
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means of the variable-step Euler's polygonal arc method. 
2. Get the 2D coordinate ’, ‘, 0  in the new coordinate system at observation time by the 

formula of point coordinate transformation.  
3. Get the 3D coordinate , ,  reduced into 2D coordinate ’, ‘, 0  and discuss about 

the range of laser-shooting in the plane z′ 0. 
4. Get the coordinate of satellites in the new coordinate system and reduced to the coordinate 
’, ‘  

Allowed shooting range: ’, ‘ | ’ ’ ’ ’   
In conclusion: 

:
′

				 1,⋯ ,  

.  

4. The Model of Disposing of Large Debris 

Large space debris can be disposed of only by capturing. The theorem of capturing is 
approximately same as the dispose of small space debris. However, the collision between large 
debris should be taken into consideration which increases the cost of capturing.  
4.1 Collision Model 

The average number of collision  of a single debris obeys Poisson distribution in unit time 
which means ~ : 

!
			  

where	 	is a constant. 
The average number of debris  after the collision of a single debris also obeys Poisson 

distribution which means	 ~ : 

!
			  

where	 	is a constant coefficient. 
New Debris come from collision: 

0	, 0	
	, 0 

The number of space debris is equal in different collision: 
 

The side length of large space debris is about 10 times longer than small space debris. We 
suppose that the space debris is a uniform sphere, so the quality of space debris obeys:  

1000 ′ 
where m is the quality of large space debris and	 ′ is the quality of small debris 
The collision only happen between large debris: 

1000
 

where  is the quality of large space debris at the end of the collision and	  is the initial 
quality of large space debris. 

Suppose each collision comes into being several pieces of space debris in same mass: 

	 0,1,⋯ ,  

The number of new space debris:	  

Through the model, a simulation of the relationship between the number of space debris and time 
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