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Abstract. The objective of this paper is the implementation and validation of an adaptive controller 
for linear systems with state delay. The contribution of this paper is the design of an adaptive 
controller that guarantees the stability and performance of the given system, even when the nominal 
conditions change. Some preliminary results are presented. The proposed approach is validated on a 
special model. Moreover, if we reduce the filter, compared to standard Model Reference Adaptive 
Control (MRAC), the performance of system can be deteriorated, even if without the state delay. 

 Introduction 
The Model reference adaptive control (MRAC) is unquestionably the most widely studied 

problem and has a very long history going back to the 1950s and extending to the present time [1]. In 
the past decades, there has been increasing interest in the study of performance bounds of adaptive 
controllers for linear system in the presence of unmodeled dynamics and time-varying delays. The 
earliest at tempts to solve the MRAC problem followed the classical path of designing an observer, 
that had to be made adaptive because of the unknown plant parameters and then feeding back the 
observed state. Among these efforts, a research approach emerged that involves the insertion of a 
stable strictly proper filter, usually first order, at the input of a standard MRAC scheme. In such 
applications, the key problem is to know the performance bounds of the adaptive controllers. During 
its design and hardware implementation, however, the stability and performance of the system may 
be destroyed by its unavoidable uncertainty due to the existence of modeling errors, the delays in the 
state. As part of the approach, it is recommended to use very high adaptive gains for fast and robust 
adaptation. As a result, it is important to investigate the L1-adaptive robust controller of MRAC 
systems. 

This paper is aimed at four points. The first point is, the insertion of the filter deteriorates. The 
second point that is due to the phase lag introduced by the input filter in the L1-AC, the stability 
margin of the system may be deteriorated. This, in turn, imposes a bound on the allowable parametric 
uncertainty. The third and final point is that the design recommendation of using very high adaptive 
gains,bring up two problems which have not been addressed in the present literature of L1-AC. The 
first problem is that the use of high adaptive gains has a negative effect on robustness in the literature 
[8]–[11]. The second is that very high adaptive gains make the differential equation of the adaptive 
law stiff and difficult to solve numerically.  

The rest of this paper is organized as follows: in Section 2, the considered L1-AC problem is 
formulated and some definitions and lemmas are presented. Based on the given lemmas, the stability 
of the discussed system is derived in Section 3, meanwhile, a numerical example is showed to 
demonstrate the robustness of our results. Finally, conclusions are drawn in Section 4.

Problem Fromulation 
In this section, we consider the following dynamic systems :      

*( ) ( ) ( ) ( )T
mx t A x t b x t bu tθ τ= + − +                                                                                                        (1) 
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)()( txcty T=                                                                                                                                             (2) 
where nRtx ∈)( and nRtx ∈− )τ( are the current state and  previous state vector and measurable, 

respectively, τ is the system delay and it is a bounded nonnegative constant , 0)0( xx = , mA  is a known 
matrix and ),( bAm  is controllable, cb,  are known constant vectors, nR∈*θ  is an unknown parameter 
vector. According to the reference [6], the L1-AC design proposed in [6] to meet the control objective: 
design an adaptive controller to ensure that the system output )(ty  follows a give reference signal )(tr  
with quantifiable transient and steady-state performance bounds. 

0ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ),         (0)T
mx t A x t b t x t bu t x xθ τ= + − + =                                                                            (3) 

0( ) ( ) ( ) ,                                (0)Tt x t x t Pbθ τ θ θ= Γ − =



                                                                           (4) 
where )(ˆ)()(~ txtxtx −= , 0>= TPP  is the solution of the Lyapunov equation ,QPAPA m

T
m −=+  Q  is a 

positive definite matrix and TQQ = . 0>Γ is the adaptive gain assumed to be a scalar as in [4]. Equation 
(4) is a standard parameter estimator scheme that described in [7].  

Using a simple Lyapunov function:  
)(θ~)(θ~)(~)(~ 1 tΓttxPtxV TT −+=                                                                                                               (5) 

where *θ)(θ)(θ~ −= tt , we assumed that )(θ~)(θ~ 1
2 tΓtV T −=  and )(~)(~

1 txPtxV T=  ,from )(ˆ)()(~ txtxtx −= ,  
ˆ( ) ( ) ( )x t x t x t= − 

 , (1) and (3), there has a result that ( ) ( ) ( ) ( )T
mx t A x t b t x tθ τ= − − 

 
 and we can get 

1 ( ) ( ) ( ) ( ) ( ( ) ( ) ( )) ( ) ( ) ( ( ) ( ) ( ))

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T T T T
m m

T T T T T

V x t Px t x t Px t A x t b t x t Px t x t P A x t b t x t

x t Qx t x t t b Px t x t Pb t x t

θ τ θ τ

τ θ θ τ

= + = − − + − −

= − − − − −

    

       

 

   

                                          （6） 

 1 1 T T T T T
2 ( ) ( ) ( ) ( ) b P x(t τ)x (t τ)θ(t) θ (t)x(t τ)x (t τ)PbT TV t t t tθ θ θ θ− −= Γ + Γ = − − + − − 

      

 

                            (7) 

1 2 ( ) ( ) 0TV V V x t Qx t= + = − ≤  

 

, it means that )(θ~ t , )(~ tx are bounded. Then, the control law which 
proposed by L1-AC can be obtained [5]-[7] 

)]()τ()(θ)[()( 0 trktxtsCtu T +−−=                                                                                                      (8)  
where )(sC is a stable, strictly proper, transfer function with 1)0( =C  and )/(1 1

0 bAck m
T −−= . As point 

out in one of these studies [1], where 1)( =sC  is simply the MRAC law  
)()τ()(θ)( 0 trktxttu T +−−=                                                                                                                (9)  

The MRAC law (9) together with (3) guarantee that x follows the state x̂ of the reference model 
ˆ ˆ( - ) ( ) ( ),m mx t A x t b r tτ τ= − + bkbm 0=                                                                                                          (10)  

Obviously，there are the following differences between L1-AC and MRAC. a) control objective: 
the MRAC objective is for the plant state/output to track the state/output of the reference model for 
any reference input signal )(tr , whereas the control objective of L1-AC is for the plant output to track 
the reference input )(tr ; b) design schemes: the two schemes is just the insertion of a strictly proper 
stable filter )(sC  at the input of the MRAC. The important question in [7] also can be applied to the 
situation of delay, because of the result irrelevant to the delay. The closed-loop transfer function 
obtained by substituting (8) with *θ)(θ =t  into (1) is given by 

)]()[()θ)1)((()( 0
1τ* trksbCesCbAsIcty sT

m
T −−−+−=                                                                        (11) 

From the small-gain theorem, we can get: if  
1 *

1 1
( ) ( ( ) 1) 1s

msI A b C s e τθ− −− − <                                                                                                                 (12) 

the closed-loop system is stable. 
According to the certainty equivalence principle for the control objective of )(lim)( trty

t ∞→
= for any 

given bounded r , we need to show the existence of a *θ that meet (12),and must guarantee that  
,1)()θ)1)((( 0

1τ* =−+− −− ksbCesCbAsIc sT
m

T s∀                                                                                             (13) 
We can find that there is no *θ can satisfy the equation (13) only if make the 0=s that because the 

left of (8) is a strictly proper transfer function, where r is a constant because of bAck m
T 1

0 1 −−=  and 
1)0( =C .  
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Lemma 1 in document [7] indicates that using the MRAC structure to track the reference input )(tr  
at all kinds of frequencies is impossible for the only simple reason that the control objective of 
MRAC is to tracking the output of the reference model rather than its input, but the objective of the 
reference signal can be got by using other adaptive control schemes [10]. Why the scheme can track 
the constant reference input )(tr ? That only because it can guarantee )()( trty = at the steady state 
where 1)0( =C  and bAck m

T 1
0 1 −−= . Inequation (12) shows that the limitation of parametric *θ in order 

to guarantee stability precisely. Lemma 1 clearly shows that both MRAC and L1-AC cannot be used 
to track the reference signal. 

Main Results  
 Why the MRAC control objective was changed to track the reference input that cannot be met by 

choosing control structure, the reasons were not be identified in [1]-[3]. However, the Theorem which 
discussed in [1] shows that we can change the control objective, in other words, changing track the 
reference input to reference model output. For the Theorem in [1], we have the closed-loop reference 
system: 

*( ) ( ) ( ) ( ),         ( )T T
ref m ref ref ref ref refx t A x t b x t bu t y c x tθ τ= + − + =

                                          (14) 
)]()τ(θ)[()( 0

* trktxsCtu ref
T

ref +−−=                                                                                    (15) 

where )0()0( xxref = , obtained by replacing )(θ t with *θ in (1)-(8). If condition (12) is satisfied, along 
with the close-loop system (1)-(8), they lead to the following results: 

0)()(lim  ,0)τ()τ(lim  ,0)()(lim =−=−−−=− ∞→∞→∞→ tututxtxtxtx reftreftreft
                        (16) 

and 
ΓtutuΓtxtxΓtxtx refrefref 210 γ)()(  ,γ)τ()τ(  ,γ)()( ≤−≤−−−≤−

∞∞∞
                        (17) 

where 0γ , 1γ and 2γ are positive constants independent of Γ ,and *θ  is unknown, the desired properties 
of the plant cannot be designed to represent with (14) and (15), from the system in [1], we have the 
following system as a desired reference model: 

[ ]0 0 0( ) ( ) ,                ( ) ( ), ( ) ( )T
des m des des desx t A x t k br y t c x t r C s r t= + = =                                      (18) 

There is a lemma in [1] which can be used to compare the fictitious reference system in (13)-(14) 
with the desired reference model in (18) as 

∞∞
−≤− )()()()λ1(λ)()(

101
trsCsWkctyty bdesdef

                                                                   (19) 

where bAsIsW mb
1)()( −−= , 

max1

τ θ)1)()((λ s
b esCsW −−= , and maxθ is an upper bound for the norm of *θ . From 

(19), we can see that minimizing the bound of )(sC  is 1)( =sC . Put another way, this situation implies 
removing the strictly proper stable filter and using the standard MRAC scheme. The MRAC law (4), 
(9) and (10) as reference model which same as (11) where 1)( =sC , guarantee a exact result. The 
following Theorem 1 is the conclusion. 

Theorem 1： (i) The MRAC scheme (4), (9), (10) guarantee that all signals are uniformly bounded 
and tracking error )()()( txtxte m−=  converges to 0 for all bounded reference inputs )(tr where 

)(ˆ)( txtxm =  is the state of the reference model (10). In addition, the tracking error satisfies the bound  
Γvte 0)( ≤

∞
, if 0)0( =e                                                                                                                                       (20) 

where }{Pv min20 λ)0(θ~=  is a constant independent of Γ . In addition, if )(tr is large enough, 
*θ)(θ →t and )()( txtx m→  are exponentially fast convergence, respectively. 

(ii) The L1-AC scheme (3), (4), (8) guarantee the following: Restrict *θ  to satisfied (12). Suppose 
that the 1η1)( += ssC  is the form of strictly proper stable filter, where 0η >  is a design parameter to be 
suitably chosen. There exists a 0ηmax >  so that for any )η,0[η max∈  all signals are uniformly bounded 
and the tracking error satisfies 
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Γvvte 21η)( +≤
∞

,if 0)0( =e                                                                                                                           (21) 
where )ηη1())θ()(( maxmax11 −+= rXssWv mb and )ηη1( max02 −= vv are constants independent of Γ , 

bAsIsW m
1

b )()( −−= , 
1maxmax )(θ(1η ssWb= , and the upper bounds of )(θ t , )(txm and )(0 trk are maxθ , mX ,and 

r , respectively.  
Proof: Using the Lyapunov candidate )(θ~)(θ~)()( 1 tΓttPeteV TT −+= , where P  is the solution of 

,IPAPA m
T
m −=+  is imply all signals are uniformly bounded and that 0)( →te as 0→t , by first showing 

that 0)()( ≤−= teteV T
 . It follows that 

tΓVtVtPete TT ∀=≤≤    ,)0(θ~)0(θ~)0()()()(  if 0)0( =e . Then, we have  
{ } { } ΓtVePeP T

tt )0(θ~)0(θ~)(λλ 2
2min

2
min ≤≤≤

∞
                                                                                                            (22) 

where { } 0λmin >P , so the (i) can be proved.  
Similarly, it can be shown that Γvtx 0)(~ ≤

∞
. Equation (3) can be written as   

)()]([)]τ(~θ)[1( )]τ(ˆθ)[1()(ˆ 0 twtrkCWtxCWtxCWtx b
T

b
T

b ++−−+−−=                                                        (23) 
where bAsIsW mb

1)()( −−=  and { }0
11 )()( xAsItw m

−− −=    
is a bounded decaying function. Then, 

01 1 1
ˆ ˆ( ) (1 ) ( )   (1 ) ( )  ( ) ( )T T

b b bx t W C x t W C x t W C k r t w tθ τ θ τ
∞ ∞ ∞∞ ∞

≤ − − + − − + +

                                         (24)  

Then, with filter )1η(1)( += ssC we have 

vWvsW
Γ

vtxsW

vsWvssWΓvtxssWtx

bbb

bbb

+++=

++++++≤

∞

∞∞

11
max

1max

1111max11max

θη)(ˆηθ                 

)1η(1)1η(1θη)(ˆ)1η(1ηθ)(ˆ                            (25) 

)τ(~)]()τ(θ)[1()]τ(θ)[1()( 0 −+−−−+−−= txtrktxCWteCWte m
T

b
T

b                                               (26) 
Then, we obtain 

∞∞∞∞
+−−+≤ )(~)()τ(θη)(ηθ)( 011max txtrktxsWtesWte m

T
bb

                                           (27) 

Since Γvtx 0)(~ ≤
∞

,then )η,0[ max∈∀t we have  
0,η)( 21 ≥∀+≤

∞
tΓvvte                                                                                               (28) 

where 0, 21 >vv  are independent of Γ . The (ii) can be proved. 
We can see that the standard MRAC satisfies its control objective from the Theorem 1. It gets its 

control objective without the limitations on *θ imposed in L1-AC indicated by (12). On the contrary, 
with non-constant reference inputs, the L1-AC scheme cannot meet the objective which guarantees a 
zero steady-state tracking error, furthermore, the tracking error of the computed transient bound is 
larger than that with MRAC. Given that in such a case, the performance of the MRAC is the same as 
that of L1-AC, it is clear that the additional complexity of a filter offers no benefit and given that the 
standard MRAC can meet the control objective exactly and with better bounds.  

Next, we discuss the robustness of L1-AC. The effect of unmodeled dynamics can be analyzed by 
inserting a multiplicative uncertainty term )(sΔm  in the plant dynamics (1) as 

[ ]*( ) ( ) ( )  (1 ( )) ( )T
m mx t A x t b x t b s u tθ τ= + − + + ∆

                                                                            (29) 
)(sΔm , multiplicative uncertainty, may represent input delay and other modeling errors of unmodeled 

(actuator) dynamics [9]. We assumed that its structure and parameters are unknown. The question is 
whether the presence of a nonzero unknown )(sΔm  can be tolerated when a control scheme designed 
for 0)( =sΔm , and if so, what is the size of the allowable uncertainty, asked in robust adaptive control 
[9], [10] as well as in robust control [12]. The question is whether the use of the input filter in (8) can  
improve robustness with respect to the unknown )(sΔm . As mentioned before, let us examine what 
stability properties can be obtained when we have perfect parameter information with the certainty 
equivalence principle, i.e., *θ)(θ =t in the control law. The control law in such a case is given by 

)()τ(θ)[()( 0
* trktxsCtu T +−−=                                                                                              (30) 

and 0η,1η1)( >+= ssC the form as same as proposed in [2]. 
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Theorem 2： If   
11

*
1

ηθ1 bmb sWΔW −≤                                                                                                 (31) 

the system (29), (30) guarantee the following inequality, in other words, for 0* ≥∀t , all signals in the 
closed-loop plant are bounded and the tracking error )()( txtxe m−=  meets: 

)))τ(θ()θθη1())τ(θ(η( *** 0
*

11

*
11

*
10

*
1 ∞∞∞

−−+−−−−≤ tm
T

mbmbbtm
T

bt rktxΔWΔWsWrktxsWe               (32) 

where bAsIsW mb
1)()( −−= and )(ˆ)( txtxm = is the state of the reference model (10). 

Proof: Applied the small-gain theorem and input-output stability results can get the proof. 
It is unambiguous from Theorem 2 that the presence of the input filter. For example, the stability 

margin bound can be reduced and the bound for the standard of the tracking error increased where 
0η ≠ . Similar to the arguments presented in above and the bound of the uncertain parameter in (31) 

shows that removing the filter (using the corresponding MRAC). We clear show that the stability of 
the corresponding adaptive scheme ( *θ)(θ =t where *θ)(θlim =

∞→
t

t
) cannot be established where the 

inequality (31) dissatisfy. As a matter of fact that *θ)(θ ≠t , further narrowed the stability margin 
bounds in (31) and requiring a more detailed analysis to establish them. 

As it follows from the above analysis: the problem which has been amended in the robust adaptive 
control document did not amend with the L1-AC results, and the document is the stability and 
performance of adaptive control schemes for plant (29) designed for 0)( =sΔm but analyzed for 0)( ≠sΔm  
with no knowledge of )(sΔm . However, parameterized and expressed as )τ()(θ −txt T  are the effect of 
multiplicative uncertainty, where )(θ t is unknown parameter and )τ( −tx is a known signal vector. This 
essentially converts the unmodeled dynamics which is a dynamic uncertainty into a parametric 
uncertainty; in such a case, all standard adaptive methods without any modification can be directly 
used. In some references, the knowledge of )(sΔm  is based on the design filter )(sC .  

As the illustrations of the analytical results we consider the plant 
*( ) ( ) ( ) ( )x t x t x t u tθ τ= − + − + , 1)0( =x ,where [ ]3,3θ* −∈ is an unknown parameter. The reference model 

is ( ) ( ) ( )m mx t x t r t= − +  and )5.0(cos5)( ttr = .  
We assume that the input filter is of the form 1η1)( += ssC for which the stability condition (12) is 

satisfied for any ]3,3[θ* −∈ , where 1.0η < . We choose 05.0η = , and assume 0θ* = . Fig.1 and Fig.2 
show the simulations generated using Matlab demonstrating the results that are consistent with what 
we have shown analytically. τ  as small as possible，and we choose 410*2τ −= sec and using a forth 
order Runge-Kutta method. Figure 1 shows that in the case of L1-AC, the tracking performance is 
lacked, and Figure 2 shows that MRAC (removal of the filter), the tracking performance is recovered.  
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Fig.1: The tracking performance with filter  Fig.2: The tracking performance without filter 

In addition to all of the above, another negative effect of the use of high adaptive gains is the 
‘freezing’ of the adaptive law as the adaptive gain becomes large, as discussed in [13]. 
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Conclusion 
In this paper, we analyze the stability and performance with state delay of an adaptive control 

design approach which was given the name L1-AC and led to a body of work involving different 
classes of plant. We have shown analytically that the L1-AC approach for a class of simple LTI plants 
with states accessible presented in [1], [12] offers no benefit in terms of performance, robustness or 
bounds that suggest useful trade-offs. On the contrary, the approach deteriorates the very properties 
of the MRAC that it is purportedly trying to improve. 
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