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Abstract. In this paper, a large-scale cloud platform Virtual machine anomaly detection key 
technologies. For cloud environments systematic study of the feature extraction technique is 
proposed based on principal component analysis (PCA) for feature extraction algorithm. The 
algorithm selects the most efficient or concentrated extract from the original performance, data 
analysis most useful "features", the first analysis of the anomaly detection problem to be solved. 

Introduction 
Cloud computing resources on demand, flexible scalable, service-oriented, high cost and other 

advantages, has become the mainstream of computing and service models. However, with the rapid 
development of cloud computing, the size and complexity of the cloud platform is growing, along 
with its frequent outbreaks of accidents, serious impact on the reliability and availability of cloud 
platforms and reduces its credibility. 

In order to enhance the credibility of the cloud platform, real-time acquisition and virtual 
machine health related performance indicators through data preprocessing, feature extraction, and a 
series of abnormality detection processing, real-time detection of the virtual machine is abnormal, 
and by the subsequent abnormal localization and troubleshooting to locate and troubleshoot. 
Accordingly, the abnormality detecting virtual machine is an important foundation for cloud 
security platform credibility. 

From the performance data effectively detect and locate abnormal its roots, it is not as simple as 
we expected. As the size and complexity of the continued growth of cloud platforms, automatic 
identification of abnormal demand continued to grow [1]. 

In this paper, unsupervised feature extraction algorithm. Detailed analysis and the principles 
derived based on principal component analysis (PCA) for feature extraction algorithm, and points 
out the principles and inadequate algorithms, and propose a new feature extraction algorithm. 
Linear feature extraction algorithm assumes data having a generally linear configuration, so there 
are some limitations. However, due to the complexity of nonlinear methods are often relatively high, 
this article is not an in-depth study. 

PCA for Feature Extraction Algorithm 
PCA is a classic unsupervised feature extraction algorithm, which uses orthogonal transform a 

group of related variables observed sample is converted into a set of linear independent component 
(called PCA). PCA was first proposed by Karl Pearson proposed in 1901 [2], and thereafter on PCA 
as a method widely used in classical statistical data analysis, data dimensionality reduction [3] [4] 
[5] [6] [7] [8], data compression, and other fields. Document [9] describes the use of user-friendly 
way of thinking PCA method. This section analyzes the principles of the PCA method, and pointed 
out its shortcomings. 
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PCA method Import 
Generally, in order to better understand the state of the system, we hope to collect as many 

performance indicators. However, some performance indicators may be relevant (redundant), while 
other performance indicators may be present in the system noise. 

Suppose the sample matrix lnX ×  has zero mean, you can use the following formula to calculate 
the performance indexes n covariance matrix between XC  ( lnX ×  if not zero mean, you need to 
calculate the mean value 

iX  for each performance index iX ; then sample matrix lnX ×  each 

sample value ijX , minus the corresponding mean 
iX ): 
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Find another formula XC  covariance matrix of [10] is (within-class scatter matrix covariance XC  
is all samples as a class): 
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Wherein x  is the random vector X  mean of each sample ix  ( iX  different from previously 
described), which is calculated as: 
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XC  specific form as: 
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Covariance matrix XC  has the following properties: 
① XC  is a symmetric matrix of order nn× ; 
② 2

ii xxσ  of XC  diagonal elements is the variance of the performance indicators iX ; 

③ 2
ji xxσ  of XC  non-diagonal elements is the covariance between the performance of iX  and 

jX . 
Covariance matrix contains XC  covariance between all performance indicators that measure the 

correlation between the two performance indicators. These covariance reflects the degree of 
redundancy and noise of the observational data [9]: 

① XC  on the diagonal, the greater its value the corresponding performance indicators more 
important, it means that its value is smaller secondary performance indicators or may be the 
presence of noise. 

② XC  non-diagonal elements, its value indicates the degree of redundancy (linear correlation) 
between the size of the corresponding performance indicators right. 

Set in the original sample is lnX ×  simple orthonormal (orthogonal these groups constitute a 
matrix of order n) under represented. PCA question to be answered is: Is there another orthonormal 
basis, which is a linear combination of simple standard orthogonal basis, and can best represent the 
sample set? 

lsY ×  new set of samples obtained after transformation. The so-called "best represent" meaning 
redundant after transform characteristic between minimizing the covariance matrix corresponding to 
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the YC that diagonal elements as small as possible; at the same time to maximize the signal that 
corresponds to such covariance on the diagonal matrix YC  is as large as possible, according to 
descending order. 

Assumptions Made by the PCA Method 
Four above ideas actually contained the PCA method assumptions made [9]: 
①Linear Hypothesis: PCA made a very tough but very efficient linear assumptions, the group is 

looking for simple linear combination of orthonormal basis, this limitation makes the problem is 
greatly simplified. 

②The mean and variance are sufficient statistics: mathematical form sufficient statistic captures 
the following description of the concept, a complete description of the mean and variance of the 
probability distribution. The only class of probability entirely by the first two moments (mean and 
variance) distribution is described by exponential family distribution (Gaussian, exponential 
distribution, etc.). To address this hypothesis, performance indicators iX , must obey the 
exponential family distribution. If you do not obey, then this assumption is not valid. On the other 
hand, this assumption also formally guarantee the covariance matrix of the signal to noise ratio 
(SNR) completely characterizes the redundancy and noise. 

③The direction of the largest variance contains our most interesting dynamic: This assumption 
also implies greater variance data with a higher signal to noise ratio. Therefore, having a large 
variance PCA representatives meaningful dynamic, and has a smaller variance principal component 
may be secondary to performance or noise. 

④ Primary is orthogonal: PCA methods between assumptions are orthogonal principal 
component vectors. Real usefulness of this assumption is valid so that the problem of analytical 
solution. In addition, P is defined by a set of orthonormal basis composition, then P is an orthogonal 
matrix. P conversion is actually the original n-dimensional coordinate system is a rigid rotation 
(holding each coordinate relative position and relative orientation between the same axis). 

Geometric Interpretation PCA Method 
The following illustrates the principles of the PCA method to three dimensions. A set of data 

points in three-dimensional Gaussian distribution in three-dimensional space is approximately an 
ellipsoid body, as shown in Figure 1 (a) below. Assuming ellipsoid with three axes a, b, c are the 
length 20, 8, 3. When using PCA feature extraction method, first find a group based on the 
assumption 3 vector whose direction is parallel to the long axis of a direction (length of the shaft in 
a way to characterize the data in the direction of the dynamic, the longer axis data variance in the 
direction of the greater), this is the first principal component direction. According to the assumption 
4, PCA defines the next to find a vector perpendicular to the base before all the basis vectors have 
been found, so the data dynamic PCA to find the second largest in the direction of the axis in a 
plane perpendicular to the direction of major axis b. Finally, find the direction of the long axis c. 
These three directions basis vectors constitute the new coordinate system. PCA raw data rigid 
rotation (PCA method based on assumptions 1 and 4) to the new coordinate system, as shown in 
Figure 1 (b) below. 
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     (a) raw data                (b) PCA data after conversion 

Fig.1. Geometrical explanation of PCA 

How to Solve Orthogonal Transform Matrix P 
The question now is how to solve the orthogonal transform matrix P, and answer why P is a 

matrix consisting of eigenvectors XC  thereof. 
Since the data matrix lnX ×  is zero mean, the new data matrix lsY ×  obtained after orthogonal 

transformation is a zero mean (because the orthogonal transformation is a rigid transformation, does 
not change the relative position between the data), it is possible to press lsY ×  calculated covariance 
matrix YC : 
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Since P is an orthogonal matrix, so there is: TPP =−1 . Suppose ip  is the column vector 1−P  
and TP  ( T

ip  is the row vector of P). There are: 
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We expect YC  has the following form: 
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The (7), (8) into (6), there are: 
T

XY PCCP =−1                                                             (9) 
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There are: 
s,    ,2  ,1i    , == iXii pCpλ                                                  (11) 

Therefore, ip  is the eigenvector of XC  ( ip  is the column vector of the row vector 
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corresponding T
ip ), i.e. ii vp = , iλ  is the corresponding eigenvalues. Thus, solving the 

eigenvector ip  of XC , and T
ip  organized into orthogonal transform matrix P (in descending 

order according to the corresponding feature value arrangement). After new data matrix lsY ×  
transformation PXY =  obtained lsY × , its covariance matrix for the elements on diagonal, 
diagonal XC  eigenvalues are arranged in descending order. 

PCA-based Feature Extraction Algorithm 
Algorithm  PCA-based feature extraction algorithm 
Input: l n-dimensional samples lxxx ,,, 21  , ie n is the number of performance indicators, l for 

the total number of samples; Ae contribution rate is h. 
Output: nsP ×  is orthogonal transform matrix, lsY ×  is feature extraction data matrix after, s is the 

number of feature-extracted. 
Step 1: The sample data is organized into a matrix lnX ×  on ln ×  order. 
Step 2: The sample value for each performance indicator, minus the average of the performance 

index, the data matrix obtained after zero mean, denoted lnX × . 
Step 3: Calculate lnX ×  under (1) or (2) covariance matrix XC . 
Step 4: Calculate XC  eigenvalues and corresponding eigenvectors, eigenvalues remember 

nλλλ ,,, 21   (in descending order), the corresponding feature vector nvvv ,,, 21  . 
Step 5: The row vector T

n
TT vvv ,,, 21   orthogonal transform matrix composed nnP × , PXY =  

transform matrix lnY ×  and new data sets; or column vectors nvvv ,,, 21   orthogonal transform 
matrix composed nnP × , XPY T= transformed new data matrix obtained lnY × . 

If the feature extraction Shihai hoping to reduce the dimension of the original data matrix, it 
should be replaced by the following Step 5 Step 5'. 

Step 5': Suppose the first k principal component of the contribution rate and meet thresholds h 

(general admission 0.85,0.9 or 0.95), namely h
n

i
i

s

i
i ≥∑∑

== 11
λλ , then take the first s eigenvectors 

constitute transform matrix nsP × , for lnX ×  transformed, on obtain data matrix lsY ×  
dimensionality reduction. 

Conclusion 
PCA is the main starting point is to remove the correlation data set (second order dependency); 

PCA method is simple, can be obtained analytical solution, assuming it four from these advantages 
made; but also because PCA methods were too many too strong assumptions, such PCA method has 
many limitations, such as PCA assumes that the original performance indicators exponential family 
distribution (Gaussian), if you do not obey, the PCA method will lose more information. The 
introduction of nuclear methods (KPCA [11]) can remove datasets higher order dependencies in the 
PCA. Another direction of extension of the PCA method is to focus on a more general definition of 
statistical dependencies in the data, such as requiring data collection in all directions after the 
dimensionality reduction is statistically independent [9], this extension leads ICA (Independent 
Component Analysis law). 
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