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Abstract. Spectral clustering algorithm based on the theory of spectrum, its meaning is the optimal 
clustering problem into graph partitioning problem is a point of clustering algorithms can be 
high-dimensional data set cluster after dimensionality reduction. Greatly reducing the time of 
clustering. Compared with the traditional clustering algorithm, spectral clustering which can have the 
advantage of clustering and converge to the global optimal solution in the sample space of arbitrary 
shape. However, the prevalence of large data sets are in the real world, when we want to clustering 
the spectral of large data sets, because the data is too large, the convergence rate will slow down, if 
not impossible to obtain results within the stipulated time we give us a lot of problems cluster. Thus, 
this paper based on Hadoop cloud platform to achieve large-scale clustering high-dimensional data 
sets. Experiments show that: spectral clustering algorithm after the parallel deployments running on 
Hadoop clusters, with good speedup and good scalability. 

1. Introduction 
Cluster analysis is an important research on data mining, and therefore has been development 

quickly. Because of its simple, spectral clustering algorithm has been implementation simply, having 
a strong theoretical foundation and it is capable of high-dimensional data dimensionality reduction 
and effective stand. The main idea of it is to be seen as a data point vertices in the graph, the similarity 
reduction and effective stand. The main idea of it is to be seen as a data point vertices in the graph, the 
similarity between points is seen as edges in the graph, complete data set clustering theory based on 
spectrum division. 

In the face of a large amount of data, spectral clustering[1] algorithm convergence speed becomes 
very slowly, even it can’t get the clustering result in the effective time, paralleling spectral clustering 
algorithm can greatly improve the spectral clustering algorithm clustering algorithm can greatly 
improve the spectral clustering algorithm clustering efficiency when it is in large-scale data 
environment. Traditional high-performance parallel computing models such as OpenMP and MPI, 
etc.[2-3], although they could improve the efficiency of spectral clustering algorithm, but still there 
are many defects, such as abstract level is not high, developers need to be familiar with the underlying 
parallel configuration and implementation details and so on. Because of its simply and abstractly, 
Hadoop users only need to focus on their own parallel tasks to be solved without the need to 
understand the details too much, distributed programming has been simplifies greatly, but it also been 
reduced the cost greatly, so this paper shows the spectral clustering algorithm parallelization based on 
Hadoop cloud platform. Experimental results show that compared with serial, spectral clustering 
algorithm which been achieved based on Hadoop has better efficiency, performance, and scalability. 
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2. Basic thinking in spectral clustering algorithm. 
 Spectral clustering algorithm, as a kind of point pair clustering algorithm, utilizes spectrum 

division theory, transforming clustering problem in the traditional sense into graph partitioning 
problem. It regards data point as vertex V in the graph, and the similarity between the data 
as weighted value W at the edge of the graph. Thus, we get an undirected weighted graph G= (V, E) 
based on the similarity between data points. Result after the graph partitioning is to make the highest 
similarity between points within the sub-graph, and the lowest similarity between points in the 
sub-graph. We use similarity matrix namely, adjacency matrix, to represent undirected weighted 
graph, figuring out the eigenvectors clustering corresponding to the first k of the smallest eigenvalues, 
representing the division of the graph. As a result, spectral clustering algorithm is associated to the 
number of data points, and independent of the dimension of data points, carrying out the 
dimensionality reduction effectively. Spectral clustering algorithm includes calculating the similarity 
matrix, calculating the diagonal matrix, calculating the Laplace matrix, calculating the first k smallest 
eigenvalues of the Laplace matrix and their corresponding eigenvectors, K-Means clustering.  

Spectral clustering is suitable for handling a multidimensional vector, and dimension reduction 
purpose can be achieved by processing. Optimal division criteria based on graph theory is to make the 
highest inner similarity of the two divided sub-graphs, and the lowest similarity between sub-graphs. 
The quality of division criteria affects the merits of the clustering results directly[4]. 

Steps of spectral clustering algorithm. 
Step1. Calculating the similarity matrix 
We use a weighted undirected graph to represent the data set, vertex of undirected weighted graph 

to represent data point V of the data set, and the weighted value W at the edge of the graph to 
represent the similarity between points. Then, an undirected weighted graph G(V, E) is obtained 
based on sample similarity. In this way, clustering problems turn into graph partition problems. And 
then we use the adjacency matrix to represent the information in the graph. 

Using Gauss similarity function to calculate the similarity between two points 
wij=exp(-||xi-xj||2/2 )                                                                                                                   (1) 

In this formula, O is the scale parameter, and needs to be entered manually, its size affecting the 
result of obtained similarity. We take the similarity matrix as W, and each element in W is the 
similarity between the point and other points. Wij represents the similarity between point i and point 
j, so, Wij = Wji. By similar calculation, we can get the similarity between each point and other points, 
combining together as similar matrix. Similarity matrix records the similarity between points. 

Step2. Calculating the diagonal matrix 
The main diagonal element of line i of the diagonal matrix is the sum of all elements of the i-th row 

of matrix W, because the i-th row of matrix W represents the similarity between point i and other 
points. Therefore, the main diagonal of line i of the diagonal matrix represents the sum of similarity 
between point i and other points. We note diagonal matrix as D. Dii represents the sum of similarity 
between point i and other points, and elements are 0 except for those at the diagonal position, 
Dii=Wi0+Wi1+Wi3+……+Win. According to this process, we can obtain the diagonal matrix. 

Step3. Calculating the Laplace matrix 
Laplace matrix can be divided into non-normalized Laplace matrix and normalized Laplace matrix. 

In this paper, we adopt the non-normalized Laplace matrix, denoted by L, L=D-W, that is the 
subtraction of elements of the diagonal matrix and their corresponding elements of the similarity 
matrix. Thus, the i-th row of Laplace matrix reserves similarity between point i and other points, as 
well as the total sum of similarity, to retain all the information in the graph. 

Step4. Calculating the first k smallest eigenvalues and their corresponding eigenvectors of the 
Laplace matrix 
In this paper, we adopt QR decomposition approach to solve the first k smallest eigenvalues and 

their corresponding eigenvectors of the Laplace matrix. 
The essence is: for any n-order real symmetric matrix, there is an orthogonal matrix Q making 

QTLQ equals to a diagonal matrix, the values on the diagonal equal to eigenvalues of the matrix L, 
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and column vectors of Q are eigenvectors corresponding to their eigenvalues. So we decompose 
Lk=QkRk, where K is the orthogonal matrix, Rk is an upper triangular matrix, Lk=QkRk, Lk+1=Q

T 

 k

LkQk=RkQk. Through continuous iteration, L eventually equal to a diagonal matrix, the values on 
diagonal is the eigenvalues of L, and each column of R is its corresponding eigenvector. We only 
need to compare the size of the eigenvalues on the diagonal, and find out the smallest k eigenvalues 
and their corresponding eigenvectors. 

Step5. K-Means clustering 
We use the eigenvectors corresponding to the first k smallest eigenvalues to arrange into a N * K 

matrix in terms of column, and see each row of the matrix as a vector in K-dimensional vector space. 
Thus, we effectively reduce the dimension. Now we're going to cluster these N n-dimensional vectors. 
The category of each row in the clustering result each row is the category which the initial first N data 
points belong respectively. K-Means clustering process is, first of all, to choose m initial centers of 
the randomly inputted dada, calculating distances between each point and the center point, and then 
assigning to the nearest clustering center, updating the k clustering centers. If the change of the center 
point is less than the threshold, end the cycle. 

3. Spectral clustering algorithm parallelization 
Through our research on the spectral clustering algorithm[5], we found that in the calculate the 

similarity matrix, calculated the k smallest eigenvalues of Laplace matrix and the corresponding 
eigenvectors and K-Means clustering, they can be paralleled. 
3.1 Parallel computing similarity matrix W 

There are n points in the data set, we use HBase to store these n points, so we can use a table to 
store the n points, with two table two  to store the similarity of the data which we calculate. the i-th 
data point is stored in the i-th row of table one  and  the i-th row of table two memory similarity 
between i-th point and other points. We remove any two data points from Table one, We calculate 
their similarity of them by Gaussian function and then re-storing them on the second table.  Since W 
is a symmetric matrix, after removal point i, i just need to calculate the first i + 1 points, the first 
similarity i + 2……section i + n points on it, so, from  point one more backward point and other points 
to calculate the similarity of work less and less. So, we deal with each map in the experiment two 
points, in order to balance the workload, the first map and a first handle n points, and the first two 
points of the first n-1 second map processing…… 
3.2 Computing the k smallest eigenvalues and the corresponding eigenvectors by paralleled 

When we use the QR algorithm for the k smallest eigenvalue of Laplacian matrix L and its 
corresponding eigenvector[6], we found that the first step seeking Q is can't be paralleled. That 
because when we schmidt orthonormal the column vector L, it will be used on the next step of the 
cycle results. But when we computing Rk = QT

kLk that can be paralleled, each row  of Q is multiplied 
by each column L, independently of each other; in the iterative process, Lk + 1 = RkQk can be 
paralleled, for the same reason. 
3.3 Parallelization K-Means 

In the K-Means algorithm[7], all points were calculated and assigned to the nearest cluster center 
and update the K cluster centers can be paralleled. All points be computed and assigned to the nearest 
cluster center can use many map tasks to achieve, update the K cluster centers can be implemented 
using multiple reduce tasks. Program loop to perform multiple MapReduce programs, each 
MapReduce corresponding to one iteration of serial spectral clustering. First, the program randomly 
generates the k cluster centers and stored in HDFS, then it operated multiple MapReduce tasks, each 
operation is performed first map MapReduce task to send the output of the map data to different 
Reduce, the final implementation of judgment function, the return value judgment function decides 
whether to perform the next operation according to MapReduce. 
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4. Experiment analysis 

4.1 Comparison between parallel and serial experimental 

 
Fig. 1 the time of parallel and serial spectral clustering 

4.2 The effects of different  numbers nodes on the parallel spectral clustering 

 
Fig. 2 the time of different nodes 

5. Summary 
Spectral clustering algorithm based on Hadoop cloud platform parallelism which is an effective 

solution to run on a single machine, that is too slow even when the results can’t be affected. Through 
the above experiments we can conclude that, when a small amount of data, spectral clustering run 
slower on parallel than on a single machine, but after reaching a certain amount of data, parallel faster 
than serial , with an additional amount of data serial appears insufficient memory. And the higher the 
number of nodes in parallel, spectral clustering algorithm faster. Therefore, we effective solute the 
lack of spectral clustering on single machine. 
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