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Abstract. To solve the problem that the positioning strategy with sliding window approaches 
requires exhaustive search in feature pyramids, the paper proposes an object detection algorithm 
based on deformable part models with Bing features to help object detection. First of all, input images 
are preprocessed with the objectness detection algorithm with Bing features and a set of potential 
windows that may contain target objects are obtained, and then the deformable part model is regarded 
as the class-specific detector to match potential windows, at last Non-Maximum Suppression is used 
to merge and reduce window areas of results to obtain final detection results. The experimental results 
on Pascal VOC 2007 dataset show that the algorithm in the paper outperforms the original DPM in 19 
out of 20 classes, achieving an improvement of 2.7% mAP. 

Introduction 
Object detection aims to determine whether there is a class of objects in static image we are 

interested in and if so, given the information about its size, location etc. and is one of the key 
problems in the field of image processing and computer vision. Because of the existence of complex 
background, occlusion, illumination and inter-class differences, object detection is a challenging 
problem. 

After decades of development, especially after the Deformable Part Model (DPM) is put forward, 
the technology of object detection has made great progress and there are a large number of algorithms 
proposed to improve DPM, including the development of low-level features: sparse codes[1] and 
Convolutional Neural Networks[2]; the development of training processes of samples: 
strongly-supervised learning[3] and semi-supervised learning[4]; the development of sample 
annotations: based on 3D geometry information[5] and so on. But above methods are still dependent 
on the sliding window search strategy to locate objects (Fig. 1). Although this method guarantees the 
recall rate, real objects appear in limited positions and most detected windows are invalid for visual 
object detection and so many windows would increase the false-positive rate . 

Some scholars aimed to further improve the detection effect by means of improvement of sliding 
window method. [6] combined SLIC super-pixels with sliding window detectors to split the image 
into foreground and background channels. Others combined object detection algorithms with 
objectness detection algorithms so as to guide the positioning process to improve the detection results. 
[8] integrated a variety of visual cues in a Bayesian framework to detect proposals. [9] proposed to 
utilize diverse sampling methods to guide the search process. [10] took use of edge information to 
determine proposals. 
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Fig. 1 The example of sliding window approaches 

But these methods are insufficient realization of complex and large amount of computation, for 
this reason we put forward a proposal positioning method based on Bing features and apply it to 
deformable part models, namely Improved Deformable Part Models with Bing features (BDPM). 
Compared with previous work, our work has following three aspects: (1) utilizing the proposal 
positioning method based on Bing features to help detection results; (2) proposing a screening 
method of proposals based on the template size and the objectness score; (3) the algorithm in the 
paper outperforms the original DPM in 19 out of 20 classes on Pascal VOC 2007 dataset, achieving 
an improvement of 2.7% mAP (mean average precision). 

Positioning Proposals Based on Bing Features 
NG Features. According to [9], for the object with a well-defined closed boundary, at the normal 

gradient space, after scaling the corresponding image window to a small fixed size, there is a strong 
correlation between the gradient magnitude and then Support Vector Machine (SVM) classifier can 
be able to distinguish objects and background. This characteristic can be used to improve the recall 
rate of object detection. In order to detect proposals, after scaling corresponding images to several 
predefined different sizes and computing the normed gradients of every resized image, the values in 
an 8×8 region of these resized normed gradients maps are defined as the normed gradients 
feature(NG feature).  

Positioning Proposals. We obtain the location information of a series of sampling windows of 
different sizes and corresponding objectness scores through the following operations: 

(1) NG features are extracted from corresponding windows of real objects and random background 
windows as positive samples and negative samples respectively; and then linear SVM is used to train 
to obtain the corresponding SVM classifier vector 𝐰 ∈ ℝ64; 

(2) We scan over several predefined window sizes of input images to sample windows that may 
contain objects which is defined as: 

𝑓 = (𝑖, 𝑥,𝑦)                                                                           (1) 
where 𝑓, 𝑖 and (𝑥, 𝑦) respectively indicate the location, size and position of a window; 

(3) The above sampled windows 𝑓 were normalized to 8×8 and is scored with the linear classifier 
vector 𝐰: 

𝑠𝑓 = 〈𝐰,𝑔𝑓〉                                                                          (2) 
where 𝑔𝑓 indicates NG feature of the window and 𝑠𝑓 indicates the classifier output score; 

(4) We use NMS (Non-maximum suppression) to select a small set of windows for each size 𝑖. 
Then linear SVM is used to train the coefficient 𝑣𝑖 and bias term 𝑡𝑖 for each size 𝑖 using the computed 
score 𝑠𝑓 as samples and then the objectness score is defined as: 

𝑂𝑓 = 𝑣𝑖 · 𝑠𝑓 + 𝑡𝑖                                                                     (3) 
Because some sizes (i.e. 256×32) are less likely than others (i.e. 128×128) to obtain objects. 

In practical applications, in order to accelerate the speed of NG features, we use binary 
approximation to binarize NG feature defined as Bing features. For the linear model 𝐰 ∈ ℝ64, we use 
a set of basis vectors to approximate 𝐰 as: 

𝐰 ≈� 𝛽𝑗𝑎𝑗
𝑁𝑤

𝑗=1
                                                                    (4) 
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where 𝑁𝑤 indicates the number of basis vectors, 𝑎𝑗 ∈ {−1,1}64 indicates the basis vector and 𝛽𝑗 ∈ ℝ 
indicates the corresponding coefficient. In order to facilitate the processing, setting 𝑎𝑗+ ∈ {0,1}64, and 
then the basis vector is defined as 𝑎𝑗 = 𝑎𝑗+ − 𝑎𝑗+. In order to save storage space, the normed gradient 
values (stored in a byte value) is approximated by using the top 𝑁𝑔 binary bits of the byte: 

𝑔𝑓 = � 28−𝑘
𝑁𝑔

𝑘=1
𝑏𝑘,𝑓                                                             (5) 

where 𝑏𝑘,𝑓 indicates corresponding values of the top 𝑁𝑔 binary bits (i.e. the normed gradient value is 
180 and can be represented as a binary number 10110100. When the value of 𝑁𝑔 is 4, then the normed 
gradient value is approximated as 180 ≈ ∑ 28−𝑘𝑁𝑔

𝑘=1 𝑏𝑘,𝑓 = 28−1 × 1 + 28−2 × 0 + 28−3 × 1 +
28−4 × 1 by using the top 4 binary bits 1011.). In Fig. 2, we use different colors to distinguish 
objectness scores of proposals. 

 
Fig.2  The detection results of objectness detetcion (The red boxes indicate the results of highest 

scores, the orange ones indicate the results of middle scores and the yellow ones indicate the results of 
lowest scores.) 

Improved Deformable Part Models with Bing Features 
Overview of Deformable Part Models. Deformable Part Models is mainly consisted of three 

parts: (1) a rough root filter 𝜔0 covering the whole object to describe the contour; (2) a number of 
high resolution filter filters 𝜔𝑖(𝑖 = 1, … ,𝑛) used to describe the detail features; (3) the deformation 
model 𝑑𝑖(𝑖 = 1, … ,𝑛) indicates the position of the part relative to the detection window and the 
corresponding deformation cost. 

An object hypothesis is defined as {𝑝0,𝑝1, … , 𝑝𝑛}  where 𝑝0  indicates the position of 𝑤0  and 
𝑝𝑡(𝑡 = 1, … ,𝑛) indicates the position of the 𝑡-th part. Therefore the overall score of the object 
hypothesis is equal to the sum of the scores of each filter minus corresponding deformation costs: 

score𝑓(𝑝0, … ,𝑝𝑛) = 𝜔0
𝑇𝜙𝛼�𝑝0,𝐻𝑓� + �𝜔𝑖

𝑇𝜙𝛼�𝑝𝑖,𝐻𝑓� − 𝑑𝑖𝑇𝜙𝑑(𝑝𝑖 ,𝑝0)
𝑛

𝑖=1

+ 𝑏           (9) 

Where 𝐻𝑓 indicates the feature pyramid of the proposal. 𝜙𝛼 and 𝜙𝑑 respectively indicates the HOG 
feature and the deformation feature between part and root filters. 𝑏 is a bias to distinguish different 
components. We detect the position of the target object according to the most likely part 
configuration: 

score𝑓(𝑝0) = max
𝑝1,…,𝑝𝑛

score𝑓(𝑝0, … , 𝑝𝑛)                                       (10) 

Algorithm Method. As stated earlier, original DPM computes the overall score at each window 
position of each scale in order to detect interested objects. Therefore we propose Improved 
Deformable Part Models with Bing features to help object detection. Proposals and corresponding 
scores (𝑓1, … , 𝑓𝑛) are obtained by the objectness detection algorithm based on Bing features and then 
a set of reliable object windows �𝑓1� , … , 𝑓𝑚�� are screened out from the proposals based on the size and 
position of the original root filter and then are resized to the approximate scales between the 
maximum and minimum size of the template instead of generating the complete feature pyramid. 
DPM is used as the class-specific detector to determine whether there is objects of corresponding 
classes and at last Non-Maximum Suppression is used to merge and reduce the window areas of the 
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results to obtain final detection results to avoid multiple overlapping windows. The diagram of 
BDPM is shown in Fig. 3. 

In the concrete implementation, we propose a screening method for proposals based on the size of 
the template and the objectness score to further prune proposals with small possibilities. On the one 
hand the real object instances appear in different sizes and scales in actual scenes and so we can 
regard the aspect ratio of the proposal as one of basic properties of objects. If the deviation degree is 
too big, we think that the proposal doesn’t contain a generic object or there is a large scale gap. On the 
other hand we expect the proposals which are false positives have a low objectness score 𝑂𝑓. Thus in 
the process of detection, we regard the objectness score as a reference value. These proposals with 
higher 𝑂𝑓 should be paid to more attention. 

Based on above intuition, we linearly combine the class-specific score score𝑓(𝑝0) of a proposal 
with its objectness score 𝑂𝑓: score𝑓∗ = score𝑓(𝑝0) + 𝛼 ∙ 𝑂𝑓. This combination can be used instead of 
the class-specific score where the weight 𝛼 controls the importance of the objectness score. 

 
Fig.3  Improved Deformable Part Models with Bing Features(The first line indicates the successful 
detection result, the second line indicates the proposal of huge difference compared with the size of 

the model and the third line indicates unsuccessful detection result.) 

Experimental Results and Analysis 
In order to evaluate the performance of the proposed algorithm, the average precision (AP) is used 

as the evaluation index. Experiments are conducted on PASCAL VOC 2007 dataset which is a 
generic object detection dataset which includes 20 categories and 4952 test images. There are a total 
of 14976 manual annotation objects in the dataset. 

Effects of the Number of Proposals. From the previous description the number of proposals and 
the threshold of the deviation degree of the aspect ratio of the proposal relative to that of the template 
used during selecting proposals are two important parameters. We first discuss the effect of the 
threshold of the deviation degree rat on detection results. rat is defined as: 

rat = �obj𝑓 − mod� mod⁄                                                            (11) 
Where obj𝑓  and mod  respectively indicates the aspect ratio of the proposal and that of the 

template. According to [9], using 1000 proposals basically already contains most of generic objects in 
the image, thus we first discuss the effect of different threshold of rat on detection result when the 
number of proposals is 1000. The experimental results of two classes are shown in Fig. 4. It can be 
found that before the threshold reaching 0.7, the AP value increases gradually and after that the AP 
value tends to be stable. Thus the threshold of rat is set to 0.7 in later experiments. 

 
Fig. 4 Effects of the threshold of rat on detection results 
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After the threshold of rat is set, we use different number of proposals to describe the specific 
effect on detection result. The experimental results of two classes are shown in Fig 5. We can find that 
when the number is increased from 50 to 200, the AP value increases steadily but the tendency 
decreases gradually. When the number is 200, the AP value tends to be stable or even degrades 
slightly. This is mainly due to with the increase of the number of proposals although proposals may 
contain new generic objects or more precise target ranges, the possibility is gradually reduced and the 
contribution to final detection results is reduced. At the same time, it may increase the probability of 
false positives. Therefore in later experiments the number is set to 200. 

 
Fig. 5 Effects of the number of object windows on detection results 

Effects of the weight 𝜶. On the basis of the above, we discuss the effect of the value of 𝛼 for 
detection results and the experimental results are shown in Fig. 6. It can be found that when the value 
of 𝛼 is set to 0.2, the AP value has achieved ideal result. Continuing to increase 𝛼 even has side 
effects on detection results. 

 
Fig. 6 Effects of the value of α on detection results 

Experimental Results of Pascal VOC 2007. In Tab. 1, we compare proposed BDPM with 
original DPM[7] and several other objectness algorithms including DPM with Bounding Box (BB), 
MDPM[8] and SegDPM[6]. The sixth row indicates the experimental results that combine the 
class-specific score with its objectness score expressed by BDPM𝛼 .We are able to see that the 
detection results of BDPM have outperformed the original DPM model in most classes and there are 
two main reasons. 

Table 1 Results of different algorithms on PASCAL2007 dataset 
Class Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow 
DPM 33.0% 54.7% 11.0% 15.0% 23.7% 44.4% 41.6% 26.5% 16.1% 27.3% 
BB 32.1% 59.9% 10.6% 13.5% 24.9% 47.7% 48.9% 27.5% 17.4% 27.0% 

MDPM 32.1% 59.3% 11.1% 13.2% 25.1% 49.8% 49.0% 29.2% 17.4% 27.7% 
SegDPM 33.8% 61.0% 14.7% 14.2% 23.6% 45.6% 49.1% 30.1% 18.2% 29.2% 
BDPM 36.4% 60.6% 12.9% 15.5% 24.4% 48.5% 50.8% 30.9% 19.4% 28.1% 
BDPM𝛼 36.9% 60.9% 12.8% 15.7% 24.9% 49.6% 51.6% 30.9% 19.8% 28.7% 
 
Diningtable Dog Horse Motorbike Person Plant Sheep Sofa Train Tv Mean 

29.4% 13.8% 56.4% 49.3% 36.3% 14.1% 18.6% 34.7% 45.6% 39.2% 31.5% 
31.1% 14.4% 57.4% 50.0% 38.4% 13.3% 20.1% 36.8% 47.5% 42.3% 33.0% 
32.7% 17.1% 59.0% 51.3% 38.8% 15.9% 16.9% 37.2% 48.2% 43.2% 33.7% 
31.8% 17.3% 59.8% 52.3% 37.9% 14.4% 22.6% 41.2% 50.7% 42.9% 34.5% 
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35.0% 17.6% 59.1% 52.3% 41.8% 14.2% 22.7% 38.2% 50.1% 44.2% 35.1% 
35.7% 17.5% 59.7% 52.9% 42.6% 14.6% 23.6% 39.1% 50.6% 44.8% 35.7% 
Compared with the positioning strategy with sliding window approaches, BDPM conducts 

detection in a small set of potential windows and it helps to decrease the number of windows need to 
detect by several orders of magnitudes. These windows meanwhile have already contained most of 
target objects, therefore on the basis of ensuring the recall rate, a substantial reduction of the scope 
and the number of windows decreases the probability of false positive. In the case of same recall rate, 
the improvement of precision rate leads to the increasing of AP value. 

Compared with original DPM, BDPM believes that generic objects tend to appear in the central 
position of potential windows and the possibility appears in the edge position of windows is smaller. 
Specific to each potential window, it would be resized to the approximate scales between the 
maximum and minimum size of the template instead of detecting in the complete feature pyramid 
which further decreases the probability of false positive. 

Conclusions 
We present an object detection algorithm based on Improved Deformable Part Models with Bing 

Features to help object detection. The future work is to further utilize the visual cues in potential 
object windows and improve the accuracy the proposal containing the generic object. It will be 
helpful to design better screening algorithm of proposals in order to provide a better basis for 
class-specific detection. Meanwhile the proposal positioning method also can be combined with other 
object detection algorithms such as R-CNN[11] to further improve the efficiency and accuracy of 
object detection. 
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