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Abstract. Change detection is an ongoing hot topic in multi-spectral imagery applications, how to 

exploit the available spectral information effectively for change detection is still an open question. 

Considering the noise interference and redundancy of multi-spectral imagery, it is important and 

necessary to learn more abstract and robust feature from raw spectrums for change detection 

application. In this paper, a deep difference representation learning model is proposed for 

multi-spectral change detection. In this model, two stacked denoising autoencoders are established, 

one for learning more abstract features from raw spectrums blocks, and the other for learning 

difference representations from the stacked change feature. The former is used to weaken noise 

interference and reduce redundancy, while the latter has the ability to highlight changes and 

suppress unchanged pixels. The experimental results on real multi-spectral data demonstrate the 

feasibility, effectiveness and robustness of the proposed deep difference representation learning 

model on multi-spectral change detection task. 

Introduction 

Change detection is an ongoing hot research topic in remote sensing field, and its objective is to 

highlight the difference between two or more images acquired over the same area at different times. 

It has been widely used in many practical applications such as disaster management [1], urban 

planing [2], environment monitoring [3] and land-use transitions [4]. Though change detection on 

remote sensing imagery has been studied for several decades, multi-spectral image change detection 

remains an open problem, due to the inadequate utilization of spectral information and the limited 

ability of the conventional change detection methods on change extraction. In the literature, many 

change detection techniques have been developed over the last two decades, which can be divided 

into two categories, pre-classification spectral change detection and post-classification change 

detection [5]. In post-classification change detection, bi-temporal images are first independently 

classified and labelled, and then the changes are extracted through the direct comparison between 

these two classified maps. Post-classification change detection techniques shift the difficulties in 

change detection techniques rely on the principle that earth surface changes result in persistent 

changes in the spectral signature. These techniques transform two or more raw image into a new 

single-band or multi-bands one in which the changes are highlighted [4]. 

Most of the proposed change detection techniques are be- longs to spectral change identification 

category, such as image differencing, image ratioing, image stacking [6], vegetation index 

differencing, principal-component analysis (PCA) [4] and change vector analysis (CVA) [7] etc. 

The arithmetical operations such as differencing and ratioing are sensitive to the atmosphere, 

lighting and seasonal variation. Compared to other change detection techniques, image stacking is 

simpler but more promising in improving interclass difference and highlighting changes [6]. 

However, the distribution of change vectors built by stacking bi-temporal raw spectrums is 
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relatively complicated and hard to estimate. Fig. 1 shows the distribution of the change vectors 

generated by mapping the stacked raw spectrums into 2-D principal component space. It is 

necessary to learn a better difference representation from the stacked spectral vectors, which should 

have the ability to highlight main changes and suppress meaningless ones, and the learned 

difference representation would be promising for change detection task. 

Recently, deep learning has become a hot research point, which has the ability to treat with raw 

data and automatically discover the representations desired for specific application such as image 

classification and change detection. For change detection tasks, higher-level difference 

representation has the ability to highlight main changes by suppressing meaningless variations or 

noise interference. In this paper, we proposed a deep difference representation learning model for 

Fig. 2. Flow chart of the proposed difference representation learning model. Bi-temporal spectral 

blocks are fed into the first SDAE for unsupervised feature learning, and the features learned by 

the first SDAE are stacked to form a change feature. And then the change features and its 

corresponding labels (produced by CVA on raw spectrums) are fed into the second SDAE for 

supervised difference representation learning. After training phrase, the testing samples are fed 

into this system, and it outputs the final change maps. 

Fig. 1. Distribution of change feature generated by mapping the stacked bi-temporal raw 

spectrums into 2-D principal component space (10000 samples chosen in random). (a) 

Multi-spectral image at 1t . (b) Multi-spectral image at 2t . (c) Distribution of stacked raw

spectrums. Red ’o’ stands for the unchanged pixels and blue ’o’ denotes the changed pixels. 
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multi- spectral change detection task, in which two stacked denoising autoencoders (SDAE) [8] are 

established, one for feature representation learning from the raw spectrums, and the other for 

difference representation learning from the stacked change features. In difference representation 

learning, the targets are obtained by using CVA on the raw bi-temporal multi-spectral images, and 

then the second SDAE are trained on the randomly selected samples (each sample contains 

difference representations and labels). Finally, the testing samples are fed into this deep model to 

generate the corresponding labels and the final change map can be obtained. 

The rest of this paper is organized as follows. Section II introduces SDAE and the proposed 

difference representation learning model in details. Section III presents the experimental results and 

analysis. At last, Section IV draws the conclusions of this paper. 

Proposed Method 

Denoising Autoencoder. A traditional autoencoder consists of an encoder and a decoder. The 

encoder transforms an input vector into a higher-level representation, and the decoder can map the 

representation back to the input data. When a denoising function is imposed in the traditional 

autoencoder, then this autoencoder becomes denoising autoencoder (DAE) [8]. Fig. 3 shows that 

two DAEs are stacked into SDAEs (FLN and DLCN). As shown in Fig. 3(a), firstly, the raw input 

data x  is corrupted into x  through a stochastic mapping ~ ( | )Dqx x x . And then, the corrupted 

input x  is mapped into the hidden representation through 

( ) sig( )f  y x Wx b (1) 

Its parameter set is { }  W,b , where W  is a 'd d weight matrix and b  is a bias vector of 

dimension 'd . In addition, sig(x) =1/ (1+exp(-x)) is called sigmoid function. Finally, the

decoder seeks to map the resulting hidden representation y  back to a reconstruction x̂ , the 

estimation of the clear input x , in its input space by 

ˆ ( ) sig( ' ')g  x y W x b   (2) 

Its parameter set is ' { ' '}  W ,b , where 'W  is a 'd d  weight matrix and b  is a bias vector of 

dimension d . The parameters  and ' of the DAE can be obtained by minimizing the average 

reconstruction error as follows, making x̂  to be as close as possible to the uncorrupted input x : 
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Where L can be a loss function 2ˆ ˆ( , ) || ||L  x x x x , and N w h   is the total number of training 

examples. The optimization of DAE is achieved by stochastic gradient descent (SGD). Like this, the 

Fig. 3. Illustration on DAE, FLN and DLCN. (a) The first DAE with structure n-m. (b) The 

second DAE with structure m-p. (c) FLN (n-m-p): Spectral block feature learning network. (d) 

DLCN (n-m-p-2): Difference representation learning and classification network. 
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representation y  is fed into next DAE for learning a higher-level representation z . Finally, a 

fine-tuning procedure is used to improve the performance of the entire network, which treats all 

layers of DAEs as a single model. 

Difference Representation Learning Model. Fig. 2 shows the flow chart of the proposed 

difference representation learning and classification model. In this model, two deep models (SDAEs) 

are established, one for unsupervised feature learning, and the other for supervised difference 

representation learning and classification. For convenience, the former deep network is called 

feature learning network (FLN) while the latter one is denoted as difference learning and 

classification network (DLCN), as shown in Fig. 3(c) and (d) respectively. FLN and DLCN have 

different functions due to their difference in three aspects: training samples, network structure and 

training mode. FLN is trained on raw spectrums blocks in an unsupervised way, while DLCN is 

trained on the stacked change features in a supervised way. Additionally, at the end of DLCN, a 

soft-max layer is added for supervised global fine-tuning, i.e., the soft-max layer is used for the 

classification of the learned difference representation. Though the difference learning procedure is 

supervised, the entire system is still unsupervised due to that the labels for supervised training are 

obtained in an unsupervised way. The coarse labels are obtained by applying CVA on the 

bi-temporal raw spectrums, it is worth noting that CVA is an unsupervised technique, which 

highlights changes and identifies the change types by analyzing the change magnitudes and 

directions of the considering bi-temporal spectral blocks [7]. Due to the limited accuracy of CVA 

technique, deep model such as SDAE is introduced to improve the change detection results. 

In the proposed difference learning and classification framework, the bi-temporal corresponding 

blocks (of size w w n  ) are unfolded into two spectral vectors with dimension 2nw , respectively. 

Then these bi-temporal spectral vectors are mixed together, and a certain number of randomly 

selected training examples are fed to FLN for its optimization. Through DLN, the spectral vectors 

are transformed into feature space, in which the noise interference is suppressed and the redundancy 

is reduced. Next, the bi-temporal features are stacked into change features, and these change 

features and their corresponding labels (obtained by CVA) are fed into DLCN for its optimization. 

In the optimization of DLCN, layer-wise pre-training is adopted to initialize the entire deep network, 

and then a supervised fine-tuning is used to globally fine-tune this deep network for change 

detection tasks. After training phrase, the testing samples are input into this system, and the 

corresponding change detection results will be output. 

Experimental Results 

Experimental Dataset, Evaluation and Settings. Fig.4 shows the Weihe river dataset used in 

our experiments, of size 718 592, in which two bi-temporal images are taken by GF-1 satellite on 

Aug. 19, 2013 and Aug. 29, 2015 respectively over the same scene in Xi’an city, China. Each im- 

age is generated by fusing PAN (2m) and multi-spectral (3.5m) images with 4-bands. The ground 

truth map is established by manual drawing according to true changes happened between them. In 

our experiments, false positive (FP), false negative (FN), the percentage of correct classification 

(PCC) and Kappa coefficient is used to quantitatively evaluate the performance of the proposed 

(a) (b) (c)
Fig. 4. Weihe river dataset. (a) Multi-spectral imagery (4-band) acquired by GF-1 satellite on 

Aug. 19, 2013. (b) Multi-spectral imagery (4-bands) acquired by GF-1 satellite on Aug. 29, 

2015. (c) The ground truth map. 
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method. Unsupervised and supervised fine- tuning can be selected for specific tasks. In our 

experiments, after many practical tests, w is set to be 3, the structure of FLN is set to be 36-100-20 

and that of DLCN is set to be 40-100-4-2. 

Results and Analysis.  Fig. 5 shows the feature maps learned by FLN from raw spectrums 

blocks, the first row shows the feature maps of the image acquired on Aug. 19, 2013, while the 

second row shows those of the image acquired on Aug. 29, 2015. In Fig. 5, each column, such as (a), 

(b) and (c), represents the activation of bi-temporal multi-spectral images on a certain neuron,

which gives us a chance to look into the function of each neuron. From these feature maps, we can

find that these neurons seem to have the ability of objects detection based on raw spectrums, for

example, the neuron (b) and (e) detect main river areas, while the neuron (d) detects the silt in the

river way. The objects detection function of deep model would be very helpful for highlighting

changes in change detection application.

Fig. 6 shows the distributions of change vector between before and after supervised difference 

representation learning. As shown in Fig. 6(a), many blue circles appear among the red ones, which 

means that it is difficult to distinguish them clearly, but its distribution looks much better than that 

of raw spectrums, shown in Fig. 1. Fig. 6(b) shows the distribution of difference representation 

(DR), in which only several changed pixels appear among the unchanged ones, and the distribution 

looks interesting and easy to distinguish changed pixels from unchanged ones. This distribution 

comparison indicates the necessary of unsupervised feature learning and supervised difference 

representation learning. 

Fig. 7 shows the feature maps of difference representation learned from change feature, the first 

row shows the difference representation maps learned by FLN in an unsupervised way, while the 

second row shows the difference representation maps learned by DLCN in a supervised fashion. 

Both rows of difference representation maps seem to highlight main changes and suppress 

Fig. 5.   Feature maps of bi-temporal images. The first row shows the feature maps of the 

image acquired on Aug. 19, 2013, while the second row shows the feature maps of the image 

acquired on Aug. 29, 2015. (a)-(h) shows the activation of bi-temporal images on neuron (a)-(h), 

respectively. 

Fig. 6. Distribution comparison of change vectors before and after difference representation 

learning (DRL). (a) Before DRL. (b) After DRL. 
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unchanged areas, and these maps look clear and less noisy, showing some merits of object-based 

change detection techniques. However, some unchanged areas are highlighted by FLN, but 

suppressed by DLCN, which indicates that supervised difference learning model can highlight 

changes more accurately by introducing knowledge, such as the initial labels generated by CVA 

techniques. 

Fig. 8 shows the change maps produced by different meth- ods, in which four state-of-the-art 

methods such as CVA [7], PCA [4], IR-MAD [9] and SDAE CVA [7] are treated as the comparison 

ones. Unsupervised CVA is an effective method for change detection, and the magnitude of the 

spectral change vectors is used to highlight changes in our experiments. Difference PCA is simple 

in implementation but effective in identifying meaningful changes. IR-MAD is a classic 

unsupervised method for change detection, and SDAE CVA means to apply CVA technique on the 

change feature stacked by the features learned by FLN from bi-temporal spectral blocks. DRL 

represents the proposed difference representation learning method. 

TABLE I.  QUANTITATIVE COMPARISON ON CHANGE MAPS 

methods FP FN PCC(%) Kappa 

CVA 56839 14961 83.10 0.5186 

PCA 33151 1086 91.94 0.7602 

IR-MAD 18315 12853 92.66 0.7514 

SDAE_CVA 16807 9815 93.73 0.7893 

DRL(ours) 2684 5216 98.13 0.9342 

As shown in Fig. 8 (a) and (c), CVA and IR-MAD highlight some unchanged regions but miss 

some main changes. PCA detects main changes but the result looks noisy and exists many FP pixels. 

SDAE CVA performs much better than CVA, which indicates the importance and necessary of 

SDAE-based unsupervised feature learning. Compared with the ground truth maps, DRL achieves 

the best visual results. Table I summarizes the FP, FP, FN, PCC and Kappa values, showing the 

quantitative comparison among the state-of-the-art change detection methods. Compared with CVA, 

PCA, IR-MAD and SDAE CVA, DRL achieves the best accuracy, with higher PCC and Kappa, 

Fig. 8 shows the change maps produced by different methods. (a) CVA. (b) PCA. (c) IR-MAD. 

(d) SDAE_CVA. (e) DRL. (f) The ground truth.

Fig. 7. Feature maps of difference representation learned from change features. The first row 

shows the difference representation maps learned in an unsupervised way, while the second row 

shows the difference representation maps learned in a supervised way. (a)-(d) shows the 

activation of change feature maps on the difference representation neuron (a)-(d), respectively. 
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lower FP and FN values. Both the visual and quantitative comparisons indicate the feasibility, 

effectiveness and robustness of the proposed method. FLN-based unsupervised feature learning 

weakens the noise interference and reduces the redundancy of multi-spectral imagery, while 

DLCN-based supervised difference learning highlights main changes and suppresses the unchanged 

regions, producing a robust change map. The proposed method also shows up some merits of 

object-based change detection techniques, such as good change structure, region continuity and less 

noise 

Conclusion 

In this paper, we propose a deep difference representation learning model for multi-spectral 

imagery change detection, in which two SDAEs are established. one is used for feature learning, 

weakening noise interference and reducing redundancy of multi-spectral data, and the other for 

difference representation learning to highlight changes and suppress unchanged pixels. The 

proposed deep difference learning model has the ability to automatically learn a robust difference 

representation from the stacked change features for change detection task. The experimental results 

also have demonstrated the feasibility, effectiveness and robustness of the proposed deep difference 

learning model on multi-spectral imagery change detection task. In the near future, multiple types of 

changes will be considered to detect from multi-spectral imagery.  
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