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Abstract. We investigat the trajectory tracking problem of quantum systems governed by Liouville 
equation. With the help of Lyapunov function and LaSlle invariance principle, impulsive control 
fields are given, which drive the quantum state to a time-variant target state. A numerical simulation 
experiment on a two-level quantum system shows the rationality of the obtained theoretical results, 
and the advantage compared to traditional control method. 

1. Introduction 
     In the last few years, because of wide variety of applications of quantum control theory, such as 
quantum chemistry, quantum information processing and quantum electronics etc.. Considerable 
attention has been focused on quantum control theory, and the growing interest in this subject have 
been attributed both to theoretical and experimental breakthroughs[1-9]and references therein, it 
indicates that quantum control has become an important area of research. 
     Lyapunov control was proposed as a good candidate for quantum state engineering, various 
Lyapunov functions and control methods have been studied and applied to quantum systems, such as 
implicit Lyapunov control[10],switching control [11],and Lyapunov functions based on state 
distance[4,12-14], average value of an imaginary mechanical quantity[13,15], and state error[7,13]. 
     Dong and Petersen introduced the switching control method to drive the system by using two 
controllers to arbitrary target state based on graph theory [16]. And in [11], Zhao, Lin and Xue 
considered another switching control method of closed quantum systems, which was via the 
Lyapunov method.Inspired by the switching control method, we developed the impulsive control 
method to study the trajectory tracking problem. As we know,impulsive dynamical systems  are a 
special class of dynamical systems, which exhibit continuous evolution typically described by 
ordinary differential equations  and instantaneous state jumps or impulses. Nowadays, there have 
been increasing interest in the analysis and synthesis of impulsive systems, or impulsive control 
systems, due to their significance both in theory and applications, see [17-19] and the references 
therein. 

Our aim in this paper is to improve the control effectiveness of quantum systems, and we choose 
the impulsive control method to control quantum systems,by adding a impulsive control field besides 
the continuous one.By the important theorem in [17], when one control field with given frequency, 
quantum systems governed by the Liouville equation can be described as impulsive dynamical 
systems. 

In this paper, based on the Lyapunov method and invariant principle of impulsive systems, our 
attention is focused on the trajectory tracking of quantum systems with impulsive control fields. In 
Section 2, firstly, we introduce the general impulsive dynamical system, then present the quantum 
systems with impulsive control fields, and introduce the invariant principle of impulsive systems. In 
Section 3 we give control fields to drive quantum systems based on the Lyapunov function, and 
analyze the advantages of the control method depended on impulsive control fields. We justify the 
effectiveness of the proposed control fields in two simulation experiments in Section 3. 
 

2. Notations and definitions 
Consider the general impulsive dynamical system described by 
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where ( ) nx t R∈  denotes the system state, ( )( )cf x t is a continuous function from nR to nR ,the set 

1 2 1 2{ , , : }E Rt t t t += < < ⊂  is an unbounded, closed, discrete subset of R+ which denotes the set 
of times when jumps occur, and : n n

df R R→ denotes the incremental change of the state at the time 

kt . In the  n − dimensional complex space nC , we choose the most common norm *|| ||: x xx = , 

where x is represented as a column vector 1 2( , , , )T
nx x x , and *x denotes its conjugate transpose. 

Denote by ( )nM C the space of n n× complex matrices with an inner product ( ) ( )n nM C M C C× → , 
*( , ) ( )a b Tr a b= , 

and the norm 2|| || ( , )a a a= . 
 
   We consider the following n − level quantum system with two control fields, and set the Plank 
constant 1= : 
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Multiplying both sides of (2.2) by i− , we have 

                            0 1 2

0

1 2( ) [ (t ) ( )]
( )

( ) ( ) ,
,[ ( )]

k

d d

t H H H t
t H

f t t
t

fρ d t ρ
ρ ρ

= −
 =

+



+



                      (2.3) 

where ( ), ( )dt tρ ρ  are density operators, represent the mixed state and the target state of quantum 
systems respectively, defined on an n − dimensional Hilbert space Η . Density operators are positive 
semi-definite Hermitian operators with unit trace, and denote the set of density operators by nS . 
Indeed, 

2 2 2|| ( ) || ( ( )) 2 ( ) 2 ( ) 0d dt Tr t Tr iTr H
dt dt

Hρ ρ ρρ ρ ρ ρ= = − −= = , 

where 2 *|| || ( )A Tr A A= is the Hilbert-Schmidt norm. Thus, || ( ) || || (0) ||tρ ρ= , for any 0t > , hence the 
density matrix evolves on a sphere decided by the initial state based on this norm: 

(0), ( ) ( ) || || (0) |( ,|| ) { | }|||n n nSOB t S tρ ρ ρ ρ∈ ≤= . 
When the quantum system evolves freely under its own internal dynamics, i.e., there is no external 
field implemented on the system, just the free Hamiltonian 0H is introduced. 1 2,H H   represent the 
interaction energy between the system and the external classical control fields 1( )f t and 2 ( )f t  
respectively, and are called interaction Hamiltonian. They are both n n×  self-adjoint operators in the 
n − dimensional Hilbert space Η and assumed to be time-independent. 
Definition 2.1: A stationary point of a Lyapunov function ( ( ))V x t  is the point satisfies 

( )( ) 0d dV V x
dt dt

= = . 

     In order to study the trajectory tracking for quantum systems, we pay attention to the Lyapunov 
functions based on the average value of Hermitian operator P which can be regarded as an 
observable of a quantum system, and choose the following Lyapunov functions : 

                                           ( ) (P ( ))V t Tr tρ= .                                         (2.4) 

   In this paper, we set the first control function 1( )f t is continuous, the other one 2 ( )f t only takes 
effect to quantum systems at the impulsive points E . By the same method in [17], we obtain that 
quantum systems (2.3) with impulsive control fields can be described as 
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Subject to quantum systems (2.2) or (2.3), we focus on finding control fields 1( )f t  and 2 ( )f t , such 
that the quantum systems with impulsive control field are driven to target states. Firstly, we introduce 
the invariant principle of impulsive systems. 
Lemma 2.1[19]: Consider the impulsive dynamical system (2.1), assume cD D⊂  is a compact 

positively invariant set with respect to (2.5), and assume that there exists a 1C  function : cV D R→  
such that 

1. ( ( )) 0, ,c kD tV x t x t≤ ≠∈ ; 

2. ( ( )))( ( ) ( ( )), , ;k d k k c kV x V x xf x tDt t t t− − −+ ≤ =∈  

Let { : , ( ( )) 0} { : , ( ( )))( ( ) ( ( ) })c k c k k d k kD V D V xG x t xx t x f Vt xt t t t t− − −= ≠ = ∪ ∈ = + =∈  , and let 
M G⊂  denote the largest invariant set contained in G . If 0 cx D∈ , then ( )x t M→ as t →∞ . 
 

3. Main results 
 
Theorem 1: For quantum system (2.5), if  

1 1 1( ) ([ , )] ( )t K Tr P Hf tρ= − , 
2 2 2( ) ([ , ] )( )k kK Tr P Hf t ρ t− −= − , 

where 1 2, 0K K > , then quantum system (2.5) with impulsive control field can be driven to the target 
states. 
Proof. Choose a Lyapunov function 

2 ( ) ( )( ) ( )V Tr Pt tρ ρ= . 
    When kt t≠ , 
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Since there is no relation between 0[ , ]P H and the controlcomponent, we can set for convenience 

0[ , ]P H =0. If we choose simple and effective control field 

1 1 1( ) ([ , )] ( )t K Tr P Hf tρ= − , 
where 1 0K > , 

.
2

2 1 1( ) ([ (, ] ) 0)t K Tr P HV tρ= − < . 

When = kt t , since the state ( )tρ is right continuous at the impulsive points, we have  
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In this situation, we choose the control field 
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2 2 2( ) ([ , ] )( )k kK Tr P Hf t ρ t− −= − , 
where 2 0K > , then 

2 2( ) V( ), ( ,( ) )k k k kV ρ t t ρ t t− −< , 
where  ( 1, 2)jk j =  can be chose properly to adjust the control amplitude. From Lemma 2.1, the 
quantum system with impulsive control field (2.5) can be driven to the target states. 
   Thus we complete the proof. 
   In order to illustrate the effectiveness of the proposed method in this paper, one numerical 
simulation has been presented for a two-level quantum system and the Fourth-order Runge-Kutta 
method is used to solve with time steps size 0.06. 
 
Example 1: Consider the two-level quantum system with internal Hamiltonian, the first control 
Hamiltonian [13], and the interaction Hamiltonians given as follows: 

20 1

1 0 0 0 1
, , .

0 1 0 1 0
i

H H H
i

−     
= = =     −       

Let the initial states be 

1 1
2 3 4(0)

1 1
3 4 2

i

i
ρ
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−

+ 
 and 

1 0
0 0

(0)dρ
 

=  
 

 respectively. The parameters are 

chosen as 1 20.3, 0.06.K K= = Set the quantum state 
(1) (2)

(t)
(3) (4)

x x
x x

ρ
 

=  
 

, and the target state 

(5) (6)
(t)

(7) (8)d

x x
x x

ρ
 

=  
 

, by the control fields  

1 1 1( ) ([ , )] ( )t K Tr P Hf tρ= − , 

2 2 2( ) ([ , ] )( )k kK Tr P Hf t ρ t− −= − , 
we have the simulation result shown in Fig. 1 and Fig.2. In Fig. 1, the simulation demonstrates the 
control performance with impulsive control field 2 ( )kf t − , and the Lyapunov function converges to 0; 
Fig. 2 describes the evolution of the control field 1( )f t , which decays to 0 as the quantum state 
converges to the target state. 

 

                                 Fig.1                                                                            Fig.2 
 

4. Conclusion 
     In this paper, we have introduced the Lyapunov control method to quantum systems with 
impulsive control fields, and given an effective control field for the trajectory tracking problem. 
The theoretical result has been verified by a numerical simulation to illustrate the effectiveness. 
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