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Abstract. In order to improve the accuracy of motion control, a turning model under steady state 
conditions of Tracked Mobile Robots (TMRs) is provided, based on considering tracks slipping. 
With making the sprocket rotating speed ratio of inner track to outer track independent variable, the 
turning of TMRs under steady state is analyzed and modeled, which is of enormous significance to 
the motion control of TMRs. And the comparison of numerical analysis results and experimental 
data shows reliable precision of the model. 

1. Introduction 
In recent decades, more and more Tracked Mobile Robots (TMRs) are applied in rescue missions, 

military reconnaissance, planetary explorations and so on[1,2]. And it is difficult but of great 
importance to control the motion of TMRs, in the autonomous control and navigation tasks of 
TMRs. The track slipping effect is inevitable in many practical applications and should be 
considered necessarily to achieve control purposes[2]. However, researches of TMRs’ motion 
control are mostly based on kinematics model with no slipping[3-5]. In order to improve the 
accuracy of motion control, a turning model based on conditions of track slipping of TMRs is 
necessary. Junwei Cheng analyzed the relationship between relative offsets and relative steering 
radius, based on conditions of track slipping[6]. J Y Wong and C F Chiang gave a general theory 
for skid steering of tracked vehicles on firm ground[7]. The work done by the authors mentioned 
above are fundamental, unfortunately, they take steering radius or relative steering radius as the 
independent variable, which TMRs or other tracked vehicles could not control directly. 

In this paper, we address the turning model under steady state of TMRs, based on conditions of 
track slipping. And in the context of this paper, the sprocket rotating speed ratio of inner track to 
outer track is applied to independent variable. The ratio is controllable so that the model of turning 
could be available for TMRs’ control. In order to establish the kinematics and dynamics model of 
TMRs, ignoring secondary factors, it is necessary to make the following assumptions: 

(1) TMR is symmetrical about its transverse and longitudinal symmetry plane, and the center of 
mass coincides with its geometric center, collectively known as the center of the TMR; 

(2) The TMR is steering steady on firm road at low speed, excluding the effect of centrifugal 
force; 

(3) Driving resistance coefficient is constant; 
(4) The tracks are flexible belt, ignoring the effect of track width; 
(5) The track-earth pressure is evenly distributed along the center line of tracks. 

2. Kinematic Analysis 
2.1 Establish Coordinate System.  

To describe the turning steering of TMRs, corresponding coordinate systems are established. As 
shown in Fig.1, the xoy  coordinate system is follow-up coordinate system fixed on TMRs’ center, 
while XOY coordinate system is ground coordinate system fixed on the ground. Assume the 
coordinate systems is coincident in the initial time. The TMR is moving on the XOY plane, so the 
position of TMR can be described by ),( oo YX , the coordinate of TMRs’ center and its orientation 
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can be described by the heading angle θ , which is the angle between x  axis and X axis. To 
explain easily, the inner track is marked as track 1, while the outer track is marked as track 2.

 
Fig.1 TMR coordinate                            

systems &. Kinematic analysis of tracks  

 
 

Fig.2 Kinematic analysis of TMR

2.2 Kinematic Analysis of Tracks.  
  In the progress of a TMR turning steering, the instantaneous steering center of the inner and outer 
track would generate lateral offsets. As shown in Fig.1, point 1C is the instantaneous steering center 
of the inner track, while point 2C is the instantaneous steering center of the outer track. And 1A  is 
the lateral offset of the instantaneous steering center of the inner track, as well as 2A  is the lateral 
offset of the instantaneous steering center of the inner track. θ  is the heading angle, then we can 
know that θ is the turning angular velocity of TMR and its tracks from theories of 
plane motion of rigid body. )2/,( 11 BxP is a point of inner track on track-earth contact area, and 

)2/,( 22 BxP − is a point of outer track on track-earth contact area, where B  is the distance of the 
center line of tracks. Then we have [ ]2/,2/, 21 LLxx −∈ , where L is the length of track-earth 
contact area, and the absolute velocities of 1P  and 2P  satisfy the equation: 
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And the points’ velocity components on y  axis are: 

ayi iv xθ=                                          (2) 
Where i  is the marks of tracks. And define the angle of aiv , the absolute velocities of iP , and 
positive direction of x  axis as iβ , named side-slip angle, then we have: 
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2.3 Kinematic Analysis of TMR. 
  As shown in Fig.2, when we consider the tracks’ slipping, the TMR turns steadily with C  as the 
steering center, R  as the turning radius, and θ  as the turning angular velocity. Correspondingly, 
when we do not consider the tracks’ slipping, the TMR turns steadily with tC  as the steering 
center, tR as the steering radius, and tθ  as the steering angular velocity. Assume the rotating 
linear velocity of tracks are 1v  and 2v , then analyse the velocities of the center points of 
track-earth contact areas, 1O  and 2O , we can get the relationship of velocities with not 
considering slip: 
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and the one considering slip: 
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  The sprocket rotating speed ratio of inner track to outer track is applied to independent variable. 
Assume the sprocket rotating speed are 1ω and 2ω ,the radius of inside and outside caterpillar 
driving wheel speed, respectively, and the driving gear pitch circle radius of the sprockets are r , 
ignore the driving wheel tooth contact with the track clearance and the tracks’ deformation, we can 
get: 
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2

1 2/
/

/ ( / 2)i i

k
L B

a A L

ω ω
ω ω

λ

=
 =
 =
 =

, plug it into equation (4) and (5), then we have no slip model: 
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and the slip model: 
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  Equation (7) and (8) describe two kinematic models, in which the turning radius and angular 
velocity are functions of speed ratio k  and the outer sprocket rotating speed ω . But in the slip 
model, R  and θ  are also functions of 1a  and 2a . However, 1a  and 2a  can not be got from 
kinematic analysis, here only depend on dynamic analysis. 

3. Dynamic Analysis 
3.1 Longitudinal Forces of the Tracks. 
  When the TMR turns at state of large-radius turning, the braking forces act on the inner track, 
and the driving forces act on the outer track. The braking forces and driving forces are called 
longitudinal forces collectively. As shown in Fig.3, By the assumptions, the track-earth pressure is 
evenly distributed along the center line of tracks, so we can define the unit track-earth pressure 
along the center line of tracks q  as follows: 

2
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Fig.3 TMR dynamic analysis 

Firstly, Consider the longitudinal forces of inner track. When the TMR turns, the inner track rotates 
the instantaneous steering center 1C . Take infinitesimal segment 1dx  at point )2/,( 11 BxP , and the 
effect force on the infinitesimal segment 1dF is proportional to the pressure on infinitesimal 
segment. The proportionality coefficient is steering resistance coefficient µ . As shown in Fig.3, 
the longitudinal component of 1dF  is 1xdF , which can be calculated by 

1 1 1 1 1cos cosxdF dF q dxβ µ β= − = −                          (10) 
From equation (3) and (9), integrate (10) above the entire track length, we can get the braking force 
of the inner track: 
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The minus sign in equation (11) explains the force is opposite to x  axis, and the coefficient µ  
satisfies equation: 

max / (0.925 0.15 / )R Bmm = +                           (12) 
And maxm is the steering resistance coefficient of B/2 turning radius.  
Similarly, we can get the driving force of the outer track: 
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3.2 Turning Steering Resistance Torque.  
As shown in Fig.3, the lateral component of 1dF  is 1ydF , which can be calculated by  

1 1 1 1 1sin sinydF dF q dxβ µ β= − = −                     (14) 
And calculate the torque that 1ydF about the rotating center 1C , we have  

1 1 1 1sinrdM qx dxµ β= −                         (15) 
From equation (3) and (9), integrate (15) above the entire track length, we can get the steering 
resistance torque of the inner track: 
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The minus sign in equation (16) explains the torque is opposite to the z axis, and the torque makes 
the TMR rotate clockwise. 
  Similarly, the steering resistance torque of the outer track is: 
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And the total steering resistance torque is: 
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3.3 Turning Steering Dynamic Balance Equation of the TMR.  
TMR low-speed uniform turning steering in horizontal plane, ignoring the influence of centrifugal 
force, the dynamic balance equation of the TMR can be written as: 
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In the equation (19) , 1 2 / 2R RF F fG= = − , and they are moving resistances, while coefficient is f . 
Take the equations (11)(13)(18) into the equation (19), then we can finally get: 
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Equation (20) gives the relationship of 1a  and 2a  between the vehicle parameter λ  and the 
ground parameter f , as well as a parameter about steering µ  . 

4. Numerical Analysis and Experimental Verification 
4.1 Numerical Analysis.  
Combine equations (8)(12)(20), when the outer sprocket rotating speed ω  is a constant value, the 
final equations can be rewritten as form: 
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Equations (22) include the lateral relative offsets of instantaneous steering center of tracks 1a  and 
2a  , as well as the turning radius R  and the sprocket rotating speed ratio of inner track to outer 

track k , which give the constraint of control variable and motion output variables. k is the control 
variable, and 1a , 2a , as well as R  are motion output variables. Furthermore, equations (22) have 
no analytical solution, but the numerical solution is solvable. Here we have the related parameters 
of experimental TMR on the cement floor in Table 1. In addition, the parameters f  and maxm  are 
measured by experiments. 

Table 1 Related Parameters of TMR 
)(mB  )(mL  )(mr  )(NG  f  maxm  

0.505 0.520 0.072 1127 0.1508 0.65 
 
In the process, we take 7453.1=ω srad / , then we can get the numerical solution of equations (22), 
by iteration method. When the sprocket rotating speed ratio k  is varying from 0 to 1, the lateral 
relative offsets of instantaneous steering center of tracks 1a  and 2a  is varying as shown in Fig.4 . 
And when the turning radius R  is growing from 2525.02/ =B m , the lateral offsets of 
instantaneous steering center of tracks 1A  and 2A  is varying as shown in Fig.5 . These two 
figures show different sides of the variation of the tracks’ lateral offsets, when TMR is turning at 
different steady states.  
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Fig.4 Relationship between k  and 1a , 2a  

 
Fig.5 Relationship between R  and 1A , 2A  

 
Fig.6 Models of relationship  

between k  and R  

 
      Fig.7 Models of relationship 

between k  and θ
4.2 Experimental Verification.  
To verify the precision of the model, the experiment of TMR steady turning is necessary. In the 
experiment, the parameters of TMR are in Table 1. Take 7453.1=ω srad / , then measure the 
turning radius exR  and the average time of steady turning steering cycle T , when control the 
speed ratio k is varying. The experimental turning angular velocity exθ can be calculated by 
formula Tex /2πθ = . The comparison of numerical analysis results of slip model and no slip model 
with experimental data are shown in Table 2 , Fig.6 and Fig.7 . 

From Fig.5 and Fig.6 , we can find that: 
(1) Slip model is more in line with the experimental data compare to no slip model; 
(2) At the same k , no slip model has smaller turning radius and bigger turning angular velocity 

comparing to slip model and the experimental data, this is due to the model do not consider the 
tracks’ slipping. The tracks’ slipping makes the effective rotating linear velocity of tracks lower, so 
slip model is of better accuracy.  
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Table 2 Comparison of Numerical Analysis Results with Experimental Data 
k   exR )(m  R )(m  tR )(m  exθ )/( srad  θ )/( srad  tθ )/( srad  
0 0.290 0.270 0.253 0.1956 0.1970 0.2488 

0.167 0.421 0.396 0.354 0.1643 0.1636 0.2074 
0.200 0.458 0.428 0.378 0.1569 0.1570 0.1991 
0.250 0.482 0.482 0.421 0.1474 0.1469 0.1866 
0.333 0.582 0.588 0.505 0.1291 0.1303 0.1659 
0.500 0.885 0.914 0.758 0.0956 0.0968 0.1244 
0.667 1.510 1.588 1.263 0.0590 0.0631 0.0829 

From Table 2, we can calculate that the average relative error rate of slip model is %14.4  for 
turning radius and %49.1  for turning angular velocity, while the quantities of no slip model are  

%71.14  and %45.29  . 

5. Conclusion 

This paper aims to establish a turning model of TMR under steady state conditions, which considers 
the tracks’ slipping, and is more suitable for TMRs’ motion control. Kinematics and dynamics of 
TMR were analyzed based on the follow-up coordinate system and the ground coordinate system, 
and the slip model is established based on these analyses. By the comparison of numerical analysis 
results and experimental data, conclusions can be summarized as follow: 

(1) Slip model is more in line with the experimental data compare to no slip model; 
(2) At the same k , no slip model has smaller turning radius and bigger turning angular velocity 

comparing to slip model and the experimental data. 
(3) The average relative error rate of slip model is %14.4  for R  and %49.1  for θ ,  while 

the quantities of no slip model are %71.14  and %45.29  . 
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