
Several kinds of variable step size methods for computer numerical
integration

Hu Jia
Nanchang Normal University, Department of mathematics and computer science

Nanchang China 330000

Keywords: variable step trapezoidal quadrature method, adaptive trapezoidal quadrature method,
variable step size Simpson quadrature method, Romberg integration

Abstract: This paper introduced several numerical solution methods including variable step
trapezoidal quadrature method, adaptive trapezoidal quadrature method, variable step size Simpson
quadrature method and Romberg integration.

1、Introduction

Accuracy is an important problem in numerical integration. In order to improve the accuracy, it’s
usually required to minimize the length of each subdivision interval in the integral formula, namely
reduce the step size. If step size is too small, the computational workload will increase and because
of the increase in the number of items, the accumulation of the error will increase, so in the actual
calculations, we usually use Integral method of variable step size.

2 Variable step trapezoidal quadrature method
The base of variable step trapezoidal integration is trapezoidal formula. In the calculation, it

needs to subdivide the interval according to the accuracy requirements gradually. In the process of
subdivision, in order to make full use of the value of the function has been obtained, it always needs
to bisect the small cell. Taking variable step trapezoidal quadrature method to calculate definite
integral y=∫ f(x)dxa

b and trapezoidal quadrature formula takes two endpoints in the interval [ai,bi]
to construct a linear function to approximate f(x), so

 ∫ f(x)dx ≈ ∫ p1(x)dx = bi−ai
2

bi
ai

bi
ai [f(ai) + f(bi)]. First, it needs to divide the interval [a,b] into n

copies and trapezoidal quadrature formula is used in each interval to carry out the integration and
then sum up all the results. The integration result is shown as follows.

yn=h
2

[f(a) + f(b)] + ∑ h × f(a + k × h)n−1
k=1

Where h is the width of each interval namely the step size of the integration. However, the initial
selection of linear functions in n intervals sometimes cannot fully approximate f(x). Variable step
trapezoidal quadrature method requires to divide every small interval into two parts, so the
integration result changes into the following one.

y2n=h
4

[f(a) + f(b)] + ∑ h
2

2n−1
k=1 × f �a + k × h

2
� = yn

2
+ ∑ h

2
n−1
k=0 × f(a + k × h + h

2
)

After the continuous division of the interval, until the difference of integral value after two times
integration is less than the required accuracy, namely |y2n-yn|<ε. At this time, y2n is the final
integral result. In order to prevent the endless division, it is generally supposed to limit the
minimum step size. When the step size is less than the specific value h0, even if the result does not
meet the accuracy requirements, the division will not continue.

Algorithm thought
(1) Dividing the n copies, calculating step h and integral value yn according to the initial interval

h=b−a
n

,yn=h
2

[f(a) + f(b)] + ∑ h × f(a + k × h)n−1
k=1

(2)Getting the integral value after the step size is halved

2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2016)

© 2016. The authors - Published by Atlantis Press 1037

y2n=yn
2

+ ∑ h
2

n−1
k=0 × f(a + k × h + h

2
)

(3) Updating the absolute value difference of the two integration, the number of the division, the
integral value and the step size
d=|y2n-yn|，yn=y2n,n=2n,h=h

2

(4) If d>ε and h>h0, then turn to (2) to continue division. Otherwise, return the integral value yn,
exit function

/*==================================
//Function name：tzi1

//Function description：Variable step trapezoidal quadrature method
//Input parameter：a Integral lower limit，b Integral upper limit
 n0 Initial partition number
 eps accuracy requirement
 h0 minimum step size
 f pointer to the integrand
return value：integral approximation ==================================*/

#include "math.h"
double tzil(a,b,n0,eps,h0,f)
double a,b,eps,h0;
int n0;
double (*f)()
{
 int n,k;
 double z,z2,h,d,x,t;
 n=n0;
 h=(b-a)/n;
 z=(*f)(a)+(*f)(b)/2.0;
 for(k=1;k<n;k++)
{
 x=a+k*h;
 z=z+(*f)(x);
}
z=z*h;
do
{ t=0.0;
 for(k=0;k<n;k++)
 {x=a+(k+0.5)*h;
 t=t+(*f)(x);
 }
z2=(z+h*t)/2.0;
d=fabs(z2-z);
z=z2;
h=h/2.0;
n=2*n;
}
while((d>eps)&&(h>h0));
return(z);
}

3Adaptive trapezoid quadrature method
Adaptive trapezoidal quadrature method is actually based on trapezoidal quadrature method. It

1038

has been improved based on the variable step trapezoidal quadrature method. In the variable step
trapezoidal quadrature method, when the difference of two integral values cannot meet the accuracy
requirements, it divides all the intervals into two parts. But in fact, not all the intervals need to
re-integration. Adaptive trapezoid quadrature method is based on such idea, its process is as
follows.

Supposed that the precision requirement of an integral interval called zero level subinterval. First,
the initial integral approximation z（0）of an integral interval is obtained according to the trapezoidal
formula. Then the integral interval is divided into two equal sub ranges called 1 level subinterval.
Then the initial integral approximation z0

（1）and z1
（1）of each 1 level subinterval are obtained taking

the trapezoidal formula. If inequality| z（0）-(z0
（1）+ z1

（1）)|< ε/2 holds, it is assumed that the integral
interval has met the accuracy requirements and the integral approximation of the function on the
interval is z0

（1）+ z1
（1）

。Otherwise, two 2 level subintervals are divided from each 1 level subinterval
and whether they meet the precision accuracy is checked respectively namely the inequality | z
（1）-(z0

（2）+ z1
（2）)|< ε/4.

For those which meets the precision requirements, it stops division but for those which cannot
meet the precision requirement, it continues dividing until all the intervals meet the accuracy
demand.

In order to prevent the endless division, generally it should limit the minimum step size. When
the step size is less than the specific value of h0, even if it does not meet the accuracy requirements,
the division will not continue.

Algorithm thought
(1) Calculating the step h and the integral approximation zi of each integral interval according to

the initial value n
h=b-a/n
for i=0,1,…n-1
do zi=

h
2
 [f（a+i×h）+f（a+i×h+1）]

(2) Using zi as the initial value to calculate the integral approximation zi’ on each interval
zi’=subtz(xi,xi+1,yi,yi+1,h,zi,eps,h0,f)

(3) The sum of the integral values of all intervals is the total integral value. The subtz process is as
follows

① Calculating the interval approximation of two subintervals
h=h

2
，z0=h

2
（y0+f（x0+h）），z1=h

2
（f（x0+h）+ y1）

② If it already meets the precision requirements or it is not allowed to divide, it returns the
z0+z1. Otherwise, it calculates the integral approximation z0’ and z1’ of two subintervals by
taking the z0 and z1 as the initial value to the recursive function subtz and returns the value
z0’+z1’.
/*==================================
//Function name：tzi2
//Function description：Adaptive trapezoidal integration
//Input parameter：a integral lower limit，b integral upper limmit

 n0 initial division number
 eps accuracy requirement
 h0 minimum step size
 f pointer to the integrand
return value：integral approximation

==================================*/
#include "math.h"
double tzil2(a,b,n0,eps,h0,f)
double a,b,eps,h0;
int n0;

1039

double (*f)();
{
 int n,k;
 double z,h,t;
 double x0,x1,y0,y1;
 double subtz();
 n=n0;
 h=(b-a)/n;
 z=0.0;
 for(k=0;k<n;k++)
 {
 x0=a+k*h;
 x1=a+(k+1)*h;
 y0=(*f)(x0);
 y1=(*f)(x1);
 t=h*(y0+y1)/2.0;
 t=subtz(x0,x1,y0,y1,h,t,eps/n,h0,f);
 z=z+t;}
 return (z);
}
static double subtz(x0,x1,y0,y1,h,t,eps,h0,f)
double x0,x1,y0,y1,h,t;
double eps,h0;
double (*f)()
{double x,y,t1,t2,d,z;
 x=x0+h/2.0;
 y=(*f)(x);
 t1=h*(y0+y)/4.0;
 t2=h*(y+y1)/4.0;
 d=fabs(t-(t1+t2));
 if((d<eps)||(h>h0))
 z=t1+t2;
else
{ t1=subtz(x0,x,y0,y,h/2.0,t1,eps/2.0,h0,f);
 t2=subtz(x,x1,y,y1,h/2.0,t2,eps/2.0,h0,f);
 z=t1+t2;
}
return(z);

}

4 Variable step Simpson quadrature method
The basic idea of variable step Simpson quadrature method is same as variable step trapezoidal

quadrature method, but the basic formulas of variable step Simpson quadrature method is not
Simpson formula, but the trapezoidal formula.

Simpson quadrature formula selects three equidistant nodes ai，（ai+bi）/2，bi in the small cell [ai,
bi] to construct quadratic functions to approximate the integrand, so ∫ f(x)dx ≈ ∫ P2

bi
ai

bi
ai (x)dx =

bi−ai
6

[f(ai) + 4f �ai+bi
2
� + f(bi)]. In the variable step trapezoidal quadrature method, first it needs to

divide the integral interval into n small intervals, then the quadrature is shown as follow:
Zn=h

2
[f(a) + f(b)] + ∑ h × f(a + k × h)n−1

k=1
Where h is the width of each small interval namely the integral step. Dividing each small interval

1040

into two parts, then the quadrature changes into:
Z2n=Zn

2
+ ∑ h

2
n−1
k=0 × f(a + k × h + h

2
)

From the two integral results above, it can construct the integral result of Simpson quadrature
formula, namely Sn=4Z2n−Zn

3
. It is same as the variable step trapezoidal quadrature method that you

can obtain the result through the continuous division until the difference of two integral results is
less than the precision requirement, namely

| S2n - Sn |<ε. And now the S2n is the finally integral result.
In order to prevent the endless division, generally it should limit the minimum step size. When

the step size is less than the specific value of h0, even if it does not meet the accuracy requirements,
the division will not continue.

Algorithm thought
(1)Calculating step size n and integral value s1 according to the initial number of divided intervals
h=b−a

n
 ，Zn=h

2
[f(a) + f(b)] + ∑ h × f(a + k × h)n−1

k=1 ，s1=zn
(2)Calculating the integral value s2 after the step size is halved
Z2n=Zn

2
+ ∑ h

2
n−1
k=0 × f �a + k × h + h

2
�，Sn=4Z2n−Zn

3

(3) Updating the absolute value difference of the two integration, the number of the division, the
integral value and the step size

d=|s2-s1| ，zn=z2n，s1=s2，n=2n，h=h
2

(4)If d>ε and h>h0, then return to the second process to continue division. Otherwise return to the
value s1 and exit the function

/*==================================
//Function name：simps1
//Function description：Variable step Simpson quadrature method
//Input parameter：a integral lower limit，b integral upper limit
 n0 initial partition number
 eps precision requirement
 h0 minimum step size
 f pointer to the integrand
return value：integral approximation
==================================*/

#include "math.h"
double simps1(a,b,n0,eps,h0,f)
double a,b,eps,h0;
int n0;
double (*f)()
{
int n,k;
double z,z2,s,s2,h,d,x,t;
n=n0;
h=(b-a)/n;
z=((*f)(a)+(*f)(b))/2.0;
for(k=1;k<n;k++)
{
x=a+k*h;
z=z+(*f)(x);
}
z=z*h;
s=z;
do

1041

{t=0.0;
 for(k=0;k<n;k++)
{x=a+(k+0.5)*h;
 t=t+(*f)(x);
 }
z2=(z+h*t)/2.0;
s2=(4.0*z2-z)/3.0;
d=fabs(s2-s);
z=z2;
s=s2;
h=h/2.0;
n=2*n;
}while((d>eps)&&(h>h0));
return(s);

}

5Romberg quadrature method
Romberg quadrature method is also called the numerical integration of successive half

accelerating convergence method. In the calculations it uses the improved order number and the
decrease of the step two measures to improve the accuracy.

It can be verified that 2m order Newton Cotes formula can be obtained by the combination of
two-order-lower Newton Cotes formula.

Rm+1(h)=
4mRm�h2�−Rm(h)

4m−1

Where Rm（h）refers to the value calculated by 2m-2 order Newton Cotes formula when the step
size is h. When h=0, R1(h) is the result calculated by the trapezoidal quadrature formula when the
step size is h. This recursive formula is Romberg integral formula.
Constantly increase the order until the difference of the two integral values is less than the accuracy,
namely

| Rm+1(h)- Rm(h)|<ε
Rm+1(h) is the final integral result.
Algorithm thought
(1)Calculating step size n and integral value r0 according to the initial number of divided intervals

h=b−a
n

 ，r0=h
2

[f(a) + f(b)] + ∑ h × f(a + k × h)n−1
k=1

(2)Calculating the integral value z by trapezoidal formula with halved step size and taking z as the
initial value of the recursive calculation.

z=r0
2

+ ∑ h
2

n−1
k=0 × f(a + k × h + h

2
)

(3) Recursive calculation Romberg integral value rm, and update the storage of
ri (i=0,1, m-1)

t=1.0
for k=1,2,…m
do t=4t
 q=t×z−rk−1

t−1

 rk-1=z
 z=q

(4)Updating the absolute value difference of the two integration, the number of the division, the
integral value and the step size

d=|q-rm-1|
rm=q，m=m+1，n=2n，h=h

2

1042

(5) If d<ε and m<10, then return to the second process to continue calculation. Otherwise return to
the value q and exit the function

 /*==================================
//Function name：rhg
//Function description：Romberg quadrature method
//Input parameter：a integral lower limit，b integral upper limit
 n0 initial partition number
 eps precision requirement
 h0 minimum step size
 f pointer to the integrand
return value：integral approximation
==================================*/

#include "math.h"
double rhg(a,b,n0,eps,f)
double a,b,eps;
int n0;
double (*f)();
{
 int n,k,m;
 double r[10],z,g,h,d,x,t;
 m=1;
 n=n0;
 h=(b-a)/n;
 z=((*f)(a)+(*f)(b))/2.0;
for(k=1;k<n;k++)
{
 x=a+k*h;
 z=z+(*f)(x);
}
r[0]=z*h;
do
{
 z=0.0;
 for(k=0;k<n;k++)
 {x=a+(k+0.5)*h;z=z+(*f)(x);}
 z=(r[0]+h*z)/2.0;
 t=1.0;
 for(k=1;k<m+1;k++)
 {t=4.0*t;q=(t*z-r[k-1])/(t-1.0);
 r[k-1]=z;z=q; }
 d=fabs(q-r[m-1]);
 r[m]=q;
 m=m+1;
 h=h/2.0;
 n=2*n;
}while(d>eps)&&(m<10);
return (q);
}

1043

6 Conclusion

Now taking the four methods to calculate the definite integral t=∫ exp （−x2）
1+x2

4
0 dx, the results are

as follows.
 tzil1: t=0.67165
 tzil2: t=0.67165
 simp：t=0.67165
 rbg: t=0.67165

Generally speaking, it usually obtains relatively large error when directly applying these formula
into the whole interval [a, b]. So it can divide the whole integral interval into a number of small
ones and take these quadrature formulas on each small interval. This kind of quadrature is called
compound formula, which is just introduced in this paper.

Reference

[1]Daying Yi. Calculation method [M]. The second edition. Hangzhou；Zhejiang University
Press,2002.
[2]Li He. Calculation method [M].Wuhan: Wuhan University of Hydraulic and Electrical
Engineering Press, 1998.
[3]Xiuzhen Li. Mathematical experiment [M].Beijing: China Machine Industry Press, 2008.

1044

