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Abstract: This paper introduced several numerical solution methods including variable step 
trapezoidal quadrature method, adaptive trapezoidal quadrature method, variable step size Simpson 
quadrature method and Romberg integration. 

1、Introduction 

Accuracy is an important problem in numerical integration. In order to improve the accuracy, it’s 
usually required to minimize the length of each subdivision interval in the integral formula, namely 
reduce the step size. If step size is too small, the computational workload will increase and because 
of the increase in the number of items, the accumulation of the error will increase, so in the actual 
calculations, we usually use Integral method of variable step size. 

2 Variable step trapezoidal quadrature method 
The base of variable step trapezoidal integration is trapezoidal formula. In the calculation, it 

needs to subdivide the interval according to the accuracy requirements gradually. In the process of 
subdivision, in order to make full use of the value of the function has been obtained, it always needs 
to bisect the small cell. Taking variable step trapezoidal quadrature method to calculate definite 
integral y=∫ f(x)dxa

b  and trapezoidal quadrature formula takes two endpoints in the interval [ai,bi] 
to construct a linear function to approximate f(x), so 

 ∫ f(x)dx ≈ ∫ p1(x)dx = bi−ai
2

bi
ai

bi
ai [f(ai) + f(bi)]. First, it needs to divide the interval [a,b] into n 

copies and trapezoidal quadrature formula is used in each interval to carry out the integration and 
then sum up all the results. The integration result is shown as follows. 

yn=h
2

[f(a) + f(b)] + ∑ h × f(a + k × h)n−1
k=1   

Where h is the width of each interval namely the step size of the integration. However, the initial 
selection of linear functions in n intervals sometimes cannot fully approximate f(x). Variable step 
trapezoidal quadrature method requires to divide every small interval into two parts, so the 
integration result changes into the following one. 

y2n=h
4

[f(a) + f(b)] + ∑ h
2

2n−1
k=1 × f �a + k × h

2
� = yn

2
+ ∑ h

2
n−1
k=0 × f(a + k × h + h

2
) 

After the continuous division of the interval, until the difference of integral value after two times 
integration is less than the required accuracy, namely |y2n-yn|<ε. At this time, y2n is the final 
integral result. In order to prevent the endless division, it is generally supposed to limit the 
minimum step size. When the step size is less than the specific value h0, even if the result does not 
meet the accuracy requirements, the division will not continue. 

Algorithm thought 
(1) Dividing the n copies, calculating step h and integral value yn according to the initial interval  

h=b−a
n

,yn=h
2

[f(a) + f(b)] + ∑ h × f(a + k × h)n−1
k=1  

(2)Getting the integral value after the step size is halved 
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y2n=yn
2

+ ∑ h
2

n−1
k=0 × f(a + k × h + h

2
) 

(3) Updating the absolute value difference of the two integration, the number of the division, the 
integral value and the step size 
d=|y2n-yn|，yn=y2n,n=2n,h=h

2
 

(4) If d>ε and h>h0, then turn to (2) to continue division. Otherwise, return the integral value yn, 
exit function 

/*================================== 
//Function name：tzi1 

//Function description：Variable step trapezoidal quadrature method 
//Input parameter：a Integral lower limit，b Integral upper limit 
            n0 Initial partition number 
            eps accuracy requirement 
            h0 minimum step size  
            f pointer to the integrand 
return value：integral approximation ==================================*/ 

#include "math.h" 
double tzil(a,b,n0,eps,h0,f) 
double a,b,eps,h0; 
int n0; 
double (*f)() 
{ 
 int n,k; 
 double z,z2,h,d,x,t; 
 n=n0; 
 h=(b-a)/n; 
 z=(*f)(a)+(*f)(b)/2.0; 
 for(k=1;k<n;k++) 
{ 
 x=a+k*h; 
 z=z+(*f)(x); 
} 
z=z*h; 
do 
{ t=0.0; 
  for(k=0;k<n;k++) 
  {x=a+(k+0.5)*h; 
   t=t+(*f)(x); 
   } 
z2=(z+h*t)/2.0; 
d=fabs(z2-z); 
z=z2; 
h=h/2.0; 
n=2*n; 
} 
while((d>eps)&&(h>h0)); 
return(z); 
} 

3Adaptive trapezoid quadrature method 
Adaptive trapezoidal quadrature method is actually based on trapezoidal quadrature method. It 
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has been improved based on the variable step trapezoidal quadrature method. In the variable step 
trapezoidal quadrature method, when the difference of two integral values cannot meet the accuracy 
requirements, it divides all the intervals into two parts. But in fact, not all the intervals need to 
re-integration. Adaptive trapezoid quadrature method is based on such idea, its process is as 
follows. 

Supposed that the precision requirement of an integral interval called zero level subinterval. First, 
the initial integral approximation z（0）of an integral interval is obtained according to the trapezoidal 
formula. Then the integral interval is divided into two equal sub ranges called 1 level subinterval. 
Then the initial integral approximation z0

（1）and z1
（1）of each 1 level subinterval are obtained taking 

the trapezoidal formula. If inequality| z（0）-( z0
（1）+ z1

（1）)|< ε/2  holds, it is assumed that the integral 
interval has met the accuracy requirements and the integral approximation of the function on the 
interval is z0

（1）+ z1
（1）

。Otherwise, two 2 level subintervals are divided from each 1 level subinterval 
and whether they meet the precision accuracy is checked respectively namely the inequality | z
（1）-( z0

（2）+ z1
（2）)|< ε/4.  

For those which meets the precision requirements, it stops division but for those which cannot 
meet the precision requirement, it continues dividing until all the intervals meet the accuracy 
demand. 

In order to prevent the endless division, generally it should limit the minimum step size. When 
the step size is less than the specific value of h0, even if it does not meet the accuracy requirements, 
the division will not continue. 

Algorithm thought 
(1) Calculating the step h and the integral approximation zi of each integral interval according to 

the initial value n 
h=b-a/n 
for i=0,1,…n-1 
do zi=

h
2
 [f（a+i×h）+f（a+i×h+1）] 

(2) Using zi as the initial value to calculate the integral approximation zi’ on each interval 
zi’=subtz(xi,xi+1,yi,yi+1,h,zi,eps,h0,f) 

(3) The sum of the integral values of all intervals is the total integral value. The subtz process is as 
follows 

① Calculating the interval approximation of two subintervals 
h=h

2
，z0=h

2
（y0+f（x0+h）），z1=h

2
（f（x0+h）+ y1） 

② If it already meets the precision requirements or it is not allowed to divide, it returns the 
z0+z1. Otherwise, it calculates the integral approximation z0’ and z1’ of two subintervals by 
taking the z0 and z1 as the initial value to the recursive function subtz and returns the value 
z0’+z1’.  
/*================================== 
//Function name：tzi2 
//Function description：Adaptive trapezoidal integration 
//Input parameter：a integral lower limit，b integral upper limmit 

            n0 initial division number 
            eps accuracy requirement 
            h0 minimum step size  
            f pointer to the integrand 
return value：integral approximation 

==================================*/ 
#include "math.h" 
double tzil2(a,b,n0,eps,h0,f) 
double a,b,eps,h0; 
int  n0; 
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double (*f)(); 
{ 
 int n,k; 
 double z,h,t; 
 double x0,x1,y0,y1; 
 double subtz(); 
 n=n0; 
 h=(b-a)/n; 
 z=0.0; 
 for(k=0;k<n;k++) 
 { 
  x0=a+k*h; 
  x1=a+(k+1)*h; 
  y0=(*f)(x0); 
  y1=(*f)(x1); 
  t=h*(y0+y1)/2.0; 
  t=subtz(x0,x1,y0,y1,h,t,eps/n,h0,f); 
  z=z+t;} 
  return (z); 
} 
static double subtz(x0,x1,y0,y1,h,t,eps,h0,f) 
double x0,x1,y0,y1,h,t; 
double eps,h0; 
double (*f)() 
{double x,y,t1,t2,d,z; 
 x=x0+h/2.0; 
 y=(*f)(x); 
 t1=h*(y0+y)/4.0; 
 t2=h*(y+y1)/4.0; 
 d=fabs(t-(t1+t2)); 
 if((d<eps)||(h>h0)) 
 z=t1+t2; 
else 
{ t1=subtz(x0,x,y0,y,h/2.0,t1,eps/2.0,h0,f); 
  t2=subtz(x,x1,y,y1,h/2.0,t2,eps/2.0,h0,f); 
  z=t1+t2; 
} 
return(z); 

} 

4 Variable step Simpson quadrature method 
The basic idea of variable step Simpson quadrature method is same as variable step trapezoidal 

quadrature method, but the basic formulas of variable step Simpson quadrature method is not 
Simpson formula, but the trapezoidal formula. 

Simpson quadrature formula selects three equidistant nodes ai，（ai+bi）/2，bi in the small cell [ai, 
bi] to construct quadratic functions to approximate the integrand, so ∫ f(x)dx ≈ ∫ P2

bi
ai

bi
ai (x)dx =

bi−ai
6

[f(ai) + 4f �ai+bi
2
� + f(bi)]. In the variable step trapezoidal quadrature method, first it needs to 

divide the integral interval into n small intervals, then the quadrature is shown as follow: 
Zn=h

2
[f(a) + f(b)] + ∑ h × f(a + k × h)n−1

k=1  
Where h is the width of each small interval namely the integral step. Dividing each small interval 
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into two parts, then the quadrature changes into: 
Z2n=Zn

2
+ ∑ h

2
n−1
k=0 × f(a + k × h + h

2
) 

From the two integral results above, it can construct the integral result of Simpson quadrature 
formula, namely Sn=4Z2n−Zn

3
. It is same as the variable step trapezoidal quadrature method that you 

can obtain the result through the continuous division until the difference of two integral results is 
less than the precision requirement, namely 

| S2n - Sn |<ε. And now the S2n is the finally integral result. 
In order to prevent the endless division, generally it should limit the minimum step size. When 

the step size is less than the specific value of h0, even if it does not meet the accuracy requirements, 
the division will not continue. 

Algorithm thought 
(1)Calculating step size n and integral value s1 according to the initial number of divided intervals 
h=b−a

n
 ，Zn=h

2
[f(a) + f(b)] + ∑ h × f(a + k × h)n−1

k=1 ，s1=zn 
(2)Calculating the integral value s2 after the step size is halved 
Z2n=Zn

2
+ ∑ h

2
n−1
k=0 × f �a + k × h + h

2
�，Sn=4Z2n−Zn

3
 

(3) Updating the absolute value difference of the two integration, the number of the division, the 
integral value and the step size 

d=|s2-s1| ，zn=z2n，s1=s2，n=2n，h=h
2
 

(4)If d>ε and h>h0, then return to the second process to continue division. Otherwise return to the 
value s1 and exit the function 

/*================================== 
//Function name：simps1 
//Function description：Variable step Simpson quadrature method 
//Input parameter：a integral lower limit，b integral upper limit 
            n0 initial partition number 
            eps precision requirement 
            h0 minimum step size 
            f pointer to the integrand 
return value：integral approximation 
==================================*/ 

#include "math.h" 
double simps1(a,b,n0,eps,h0,f) 
double a,b,eps,h0; 
int n0; 
double (*f)() 
{ 
int n,k; 
double z,z2,s,s2,h,d,x,t; 
n=n0; 
h=(b-a)/n; 
z=((*f)(a)+(*f)(b))/2.0; 
for(k=1;k<n;k++) 
{ 
x=a+k*h; 
z=z+(*f)(x); 
} 
z=z*h; 
s=z; 
do 
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{t=0.0; 
 for(k=0;k<n;k++) 
{x=a+(k+0.5)*h; 
 t=t+(*f)(x); 
  } 
z2=(z+h*t)/2.0; 
s2=(4.0*z2-z)/3.0; 
d=fabs(s2-s); 
z=z2; 
s=s2; 
h=h/2.0; 
n=2*n; 
}while((d>eps)&&(h>h0)); 
return(s); 

} 

5Romberg quadrature method 
Romberg quadrature method is also called the numerical integration of successive half 

accelerating convergence method. In the calculations it uses the improved order number and the 
decrease of the step two measures to improve the accuracy. 

It can be verified that 2m order Newton Cotes formula can be obtained by the combination of 
two-order-lower Newton Cotes formula. 

Rm+1(h)=
4mRm�h2�−Rm(h)

4m−1
 

Where Rm（h）refers to the value calculated by 2m-2 order Newton Cotes formula when the step 
size is h. When h=0, R1(h) is the result calculated by the trapezoidal quadrature formula when the 
step size is h. This recursive formula is Romberg integral formula. 
Constantly increase the order until the difference of the two integral values is less than the accuracy, 
namely 

| Rm+1(h)- Rm(h)|<ε 
Rm+1(h) is the final integral result. 
Algorithm thought 
(1)Calculating step size n and integral value r0 according to the initial number of divided intervals 

h=b−a
n

  ，r0=h
2

[f(a) + f(b)] + ∑ h × f(a + k × h)n−1
k=1  

(2)Calculating the integral value z by trapezoidal formula with halved step size and taking z as the 
initial value of the recursive calculation. 

z=r0
2

+ ∑ h
2

n−1
k=0 × f(a + k × h + h

2
) 

(3) Recursive calculation Romberg integral value rm, and update the storage of  
ri (i=0,1, m-1) 

t=1.0 
for k=1,2,…m 
do t=4t 
   q=t×z−rk−1

t−1
  

   rk-1=z 
   z=q 

(4)Updating the absolute value difference of the two integration, the number of the division, the 
integral value and the step size 

d=|q-rm-1| 
rm=q，m=m+1，n=2n，h=h

2
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(5) If d<ε and m<10, then return to the second process to continue calculation. Otherwise return to 
the value q and exit the function 

  /*================================== 
//Function name：rhg 
//Function description：Romberg quadrature method 
//Input parameter：a integral lower limit，b integral upper limit 
            n0 initial partition number 
            eps precision requirement 
            h0 minimum step size 
            f pointer to the integrand 
return value：integral approximation 
==================================*/ 

#include "math.h" 
double rhg(a,b,n0,eps,f) 
double a,b,eps; 
int n0; 
double (*f)(); 
{ 
 int n,k,m; 
 double r[10],z,g,h,d,x,t; 
 m=1; 
 n=n0; 
 h=(b-a)/n; 
 z=((*f)(a)+(*f)(b))/2.0; 
for(k=1;k<n;k++) 
{ 
 x=a+k*h; 
 z=z+(*f)(x); 
} 
r[0]=z*h; 
do 
{ 
 z=0.0; 
 for(k=0;k<n;k++) 
 {x=a+(k+0.5)*h;z=z+(*f)(x);} 
 z=(r[0]+h*z)/2.0; 
 t=1.0; 
 for(k=1;k<m+1;k++) 
 {t=4.0*t;q=(t*z-r[k-1])/(t-1.0); 
  r[k-1]=z;z=q;         } 
 d=fabs(q-r[m-1]); 
 r[m]=q; 
 m=m+1; 
 h=h/2.0; 
 n=2*n; 
}while(d>eps)&&(m<10); 
return (q); 
} 
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6 Conclusion 

Now taking the four methods to calculate the definite integral t=∫ exp （−x2）
1+x2

4
0 dx, the results are 

as follows. 
   tzil1:  t=0.67165 
   tzil2:  t=0.67165 
   simp：t=0.67165 
   rbg:  t=0.67165 

Generally speaking, it usually obtains relatively large error when directly applying these formula 
into the whole interval [a, b]. So it can divide the whole integral interval into a number of small 
ones and take these quadrature formulas on each small interval. This kind of quadrature is called 
compound formula, which is just introduced in this paper. 
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