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Abstract: In this research, in order to address interferences of air traffic from complex factors like 
weather and local data abnormality of radar samples, fuzzy clustering and neural network ensemble 
were introduced into the short-term forecasting of air traffic flow. Firstly, with K-means cluster 
analysis, this research compared traffic volume at different time with that of each clustering center to 
identify the temporal clustering of traffic volume. Secondly, according to different data sets from 
clustering analysis, corresponding neural network models were established. On the basis of Bagging 
method, a neural network ensemble weight allocation algorithm of fuzzy subordinative degree was 
also built to identify weight of each neural network and to establish neural network ensembles model. 
Finally, according to 3 principle of normal distribution, abnormal data out of S － ＋ection (μ 3σ, μ 3σ) 
was cleaned and short-term forecasting results were acquired. Our model showed superior results of 
short-term radar data forecasting for Shanghai Terminal Area, overmatching regression analysis and 
neural network forecasting. The experiment verified that the method is valid and feasible for 
short-term forecasting of air traffic flow.  

1. Introduction 

In recent years, with the rapid development of civil aviation transportation industry, conflicts 
between airspace resources and air traffic demand have become increasingly serious. Accurate 
forecasting of air traffic flow in terminal airspaces is a premise and foundation for the terminal 
airspace resource optimization and air traffic flow management, thus showing important research 
value. However, as short-term forecasting of air traffic flow should take into account many 
influential factors, it is accompanied with complexity and randomness, which are obstacles for 
accurate forecasting. This is considered as a bottleneck for air traffic flow management and airspace 
management research.  

To this end, researchers all over the globe are engaging in the research of this area and have 
reached certain progresses. For example, Faraway J et al [1] followed the characteristic that neural 
network can memorize complex patterns and trends of historical data, carried out the learning of a 
great amount of historical flight traffic data, and established an air traffic flow forecasting model 
based on neural network. Ilona W et al [2], on the basis of historical data, identified parameters of 
time series model and established a time series model for civil aviation traffic forecasting. Cui 
Deguang et al [3-5] analyzed influence factors of civil aviation traffic flow, and proposed an artificial 
neural network combined with regression method for the traffic flow forecasting of Dawangzhuang 
navigation station. They acquired forecasting results superior to artificial neural network. Liu Yumei 
et al [6] applied system identification theory to identify model and parameters and established an air 
traffic flow forecasting model based on the principle of least square estimation. Xu Xiaohao et al [7] 
proposed a combined forecasting method based on different data sources. Through the statistics and 
forecasting of flight time, flight planning data and radar data, they used genetic algorithms for 
model weight optimization and established a combined forecasting model of minimum error. Zhao 
Yifei et al [8] proposed a Holt-Winters model based on “optimal smoothing coefficient” to forecast 
short-term air traffic flow of airport. However, the above findings mainly focused on the research of 
forecasting methods, and attempted to improve the precision of forecasting by selecting and 
combination of forecasting methods. Yet, it is known that influencing factors of precision of 
forecasting include forecasting methods and forecasting sample data. The latter is the source and 
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basis of the entire forecasting. Currently, radar surveillance control is now widely adopted by major 
terminal areas in China. However, due to the influences from complex random factors such as the 
weather, the economy and fuel prices [9], radar forecasting data present local abnormity of data, 
which is a key reason for the difficulty of improving precision of forecasting. 

Because of uncertainties of air traffic in terminal areas, the application of regression method in 
forecasting is limited. 

However, the time series analysis methods are more in line with the characteristics of flow series, 
especially for systems that are hard to establish a precise mathematical model with a variety of 
uncertainties and non-linearity. Artificial neural network and other intelligent forecasting methods 
can often handle problems that are hard to be addressed by traditional methods. However, related 
theories and practices have shown that [10, 11] pure neural network forecasting model presented a 
defect that with the increase of complexity, more hidden nodes will be generated and the training 
time will be extended greatly, resulting in training difficulties. To solve the defect, infinite data is 
needed to generate perfect effects. In fact, training data is generally very limited. A single network 
will be difficult to adequately reflect and mine information, tending to make unsatisfactory training 
precision. Excessive pursue of training precision often leads to “overly fitting”. Meanwhile, neural 
network ensemble can dig information of several single networks to improve neural network 
performance. Therefore, this research proposed a short-term forecasting method of terminal area 
based on neural network ensemble. Through the establishment of intelligent data clustering and 
self-adapting neural network ensemble forecasting model, this research cleaned local data of 
abnormality and acquired precise short-term forecasting results of traffic volume.   

2, modeling of fuzzy neural network ensemble  

In short-term forecasting, when short-term forecasted traffic volume shows substantial variation 
in each time period, the data should be classified according to traffic volume so as to obtain several 
sets of data with relatively consistent traffic volume. Therefore, intelligent classification of data is a 
precondition and foundation for the forecasting with neural network ensembles model. This 
research adopted K-means cluster analysis to realize the classification of air traffic flows.  
2.1 Clustering analysis to enable the classification of short-term forecasting of traffic volume   

For radar data of air traffic flow, the clustering technology was used to divide the input space 
into several sub-space with more obvious features (eg. different traffic periods), and for different 
sub-spaces, corresponding neural network models with different structures were established. The 
forecasting was then conducted by neural network ensemble. Our research adopted algorithm to 
determine the clustering center, and compared traffic volume at different times with traffic volume 
in each clustering center to determine the temporal clustering and division of traffic volume. The 
specific algorithm is as follows: 

A data set contained n traffic data was given and the category k was given by users. k data 
objects were randomly selected as the initial clustering centers. The remaining data objects were 
assigned to the most similar clusters according to the principle of greatest similarity. Next, 
according to the existing clustering results, center of mass in existing clusters was used to define the 
prototype. k centers of mass were taken as new clustering centers for re-clustering of data sets. The 
process was repeated until all the defined criterion functions tended to a given value or began to 
converge. The criterion function for the sum of squared errors is defined as: 
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Where, Je is the sum of squared errors, p is spatial data object, mi is the mean of Cluster xi. The 
process was as follows:  
(1) According to the investigation of air traffic of target airspace, the time series distribution of 

short-term forecasting of traffic volume was identified and k objects were determined.  
(2) Each object was taken as the “center” of a category, representing k-th category.  
(3) According to the principle of nearest to the center, most similar clusters to each object were 
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sought and other objects were assigned to each corresponding category.  
(4) For each category, the mean of all objects was calculated as the new “center”.  
(5) According to the principle of nearest to the center, all objects were re-assigned to each category.    
(6) Back to (3) until no changes of objective function were observed.  

According to the above process, k clustering centers were obtained. With the air traffic flow 
xi(i=1, 2, , k) as the reference, air traffic flow in each time period was divided.   
2.2 Air Traffic Neural Network Ensembles Model  

RBF network can realize the non-linear conversion from input space RN to output space RM 

through the linear combination of primary function. Meanwhile, air traffic flow data is a type of 
time series with relatively intensive non-linearity. This method can forecast M data in the future 
from the previous N data. In essence, this method is to identify a non-linearity mapping relationship 
from RN to RM. therefore, RBF network is appropriate for the forecasting of systems containing 
non-linear time series, such as the short-term forecasting of traffic volume. 

For air traffic flow forecasting, some scholars have proposed a forecasting method based on 
neural network [3, 4], which is proven to be an efficient non-model method. However, the 
configuration and training of neural network is a NP issue. In the practical application, due to the 
lack of a priori knowledge of the problem, a great amount of laborious time-consuming experiments 
are needed to identify proper neural network models, algorithms and parameter settings. The effects 
of application are completely determined by users’ experiences, which influence the improvement 
of the network generalization. Hansen and Salamon[10] proposed a pioneering neural network 
ensemble, which can significantly improve the network generalization by training several neural 
networks and the integration of results. Neural network ensembles mainly encompass Bagging and 
Boosting. Bagging shows certain differences from Boosting. The training sets of Bagging are 
randomly selected and each set is independent from the other. Meanwhile, the selection of Boosting 
training sets is not independent. The selection of each set is correlated with the previous round of 
learning result. Moreover, each forecasting function of Bagging does not have weight, while 
Boosting does. In addition, each forecasting function of Bagging can be generated in a parallel 
manner but that of Boosting can only be generated in order.   Compared with time-consuming 
learning methods like neural network, Bagging can save a lot of time by parallel training.   

Therefore, the application of a pure method in air traffic forecasting has certain forecasting errors. 
This is mainly because that in a period of time, air traffic in the terminal area may show significant 
variation (such as traffic volume of daytime and nighttime, traffic volume during holidays and 
regular days). Besides, changes of short-term forecasted traffic volume are not mutation but present 
decreasing or increasing progressively[12]. To this end, this research obtained different spaces of 
data sets based on clustering analysis, and established corresponding neural network models for 
different data sets. With Bagging, a weight allocation algorithm for neural network ensemble of 
fuzzy sets was established to identify the weight of each neural network. Finally, the results of 
neural network ensemble were obtained. The method of neural network ensemble is shown in the 
following figure. 
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Figure 1 Diagram of neural network ensemble 

The weight allocation algorithm of neural network ensemble is designed as follows: assume the 
above clustering method divided s traffic periods of a day, and s sample spaces were divided 
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according to respective time period. The training set of each period was the ensemble result by 
training an individual neural network and weighing the network. Given the traffic transitivity 
among time periods, the weight of each neural network was calculated by the fuzzy subordinative 
degree at forecasting points in the time period. We assumed that the clustering results were divided 
into two groups: daytime and nighttime. The fuzzy curves are shown in the following figures: 

 
Figure 2 Fuzzy Curve of Traffic Flow of Daytime 

 
Figure 3 Fuzzy Curve of Traffic Flow of Nighttime 

Let the forecasting point be t. Its membership to rush hours of daytime, other hours of daytime, 
and nighttime were f1(t) and f2(t) respectively. Therefore, the corresponding weight of neural 
network output in each time period is:   
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When applying the method broadly, if s sets of sample spaces are obtained by clustering analysis, 
the corresponding weight of neural network output in each time period is: 
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This method ensures the precision of forecasting, reduces the size of each network, and shortens 
the learning time. Therefore, it enables a sound ability to learn. 
2.3 Abnormal data cleaning and forecasting based on neural network ensembles model 

There are many methods for abnormal data detection [13, 14]. The conventional outlier detection is 
based on whether the current observed value exceeds the pre-established threshold. Among methods 
of the threshold detection, generally we set a normal parameter base line according to the historical 
data, that is, a permissible range (containing 2 or 3 standard deviations). Once the value exceeds the 
range, it is identified as an outlier. However, the method also shows some problems, such as how to 
set a proper threshold, and hard to identify some subtle abnormal behaviors in the short-term 
forecasting of traffic volume. Besides, as flows in air traffic network have significant differences in 
different time periods, one threshold for all time periods is not accurate.   

Our research considered that outliers do not solely indicate that an observed value exceeded the 
set threshold. Instead, it should also include non-conformities from the rules of data distribution in a 
period. Therefore, the pure dependence on the threshold for outlier identification often leads to a 
failure of identifying all outliers. However, from the perspective of forecasting error in neural 
network ensemble, it is easy to detect all outliers. This is because neural network can capture the 
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basic distribution patterns of traffic data while abnormal sequences are not consistent with basic 
rules. Therefore, neural network presents obvious forecasting errors. For the short-term forecasting 
of air traffic, due to the randomness of short-term forecasting of traffic volume, abnormality 
samples could be observed among some samples. These abnormality samples inevitably cause 
jeopardized precision of forecasting. However, due to the excellent generalization ability, neural 
network ensembles model can enable the fitting of most air traffic flow data in terminal areas. 
Besides, it supports the identification of a small amount of abnormal data, which can remarkably 
improve forecasting results. Hence, if several neural networks present large forecasting errors of the 
same part of data, this part of data can be identified as abnormal sequences. 

With the stochastic oscillation of time series, each forecasting error is a random variable, and 
each random variable of all samples is mutually independent and distributed. According to the 
central limit law of probability theory, the approximation of forecasting deviation is subject to rules 
of normal distribution (when the number of random variables tends to infinite, it is subject to 
normal distribution). 3σ criterion is based on repeated precision measurements like normal 
distribution, and the interference or noise caused singular data cannot meet the requirement of 
normal distribution. Therefore, according to 3σ criterion of normal distribution, abnormal data of 
small probability events outside the Section (μ－3σ, μ＋3σ) were cleaned.      

The cleaning method of neural network ensemble for abnormal data is as follows:  
(1) ei(x) represents the forecasting error of i-th neural network for Sample x. Assume that 

forecasting error is subject to normal distribution, i.e. ei(x) - N(i, i
2). The mean I and variance I 

of forecasting error can be calculated according to the forecasting errors of the forecasting model in 
the training set D.  

(2) According to 3 criterion of normal distribution, for a single forecasting model, the 
identification function is:  
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From the above equation, it is known that δi(x)=0 represents the expectancy value of i-th 
forecasting model for a forecasting error at forecasting point x with great deviation.    

(3) When the above fuzzy subordinative degree is used to identify neural network ensemble, the 
majority of the voting in neural network ensembles model is used to identify whether a sample is an 
outlier, that is:   
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where, the number of integrated neural networks is s, or a number of clusters. The forecasting 
errors of Sample x satisfied  )(x , 0.5<γ≤1, and smaller than the threshold γ. Thus, it is 
identified that the Sample x was an outlier. The value of the threshold γ was subject to the amount of 
forecasting data.    

3 Illustrative Example of Short-Term Forecasting of Traffic Volume   

3.1 Clustering analysis of flight data recorded by radar 
With radar recorder, the statistical radar data of Wuxi corridor of Shanghai Terminal Area were 

used to obtain the traffic flow data in two time periods (from May 3, 2013 to May 12, 2013, and 
from October 11, 2013 to December 24, 2013). With the Traffic statistics in each two hours per day, 
after 85 days of data collection, a total of 1020 samples of data were acquired. Traffic statistics 
results showed that the short-term forecasting load of traffic volume of daytime greatly exceeded 
that during the night. Therefore, daily traffic volume in different time periods was considered to be 
divided into two parts. SPSS was used for clustering analysis of data, with the cluster number of 2 
and the probability of distance differences between categories smaller than 0.001. The original 12 
clusters were aggregated into two categories. The first included two periods: Period 1-4 and Period 
10-12. The other category encompassed Part 5-9. In other words, data sets from 0:00 to 8:00 and 
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from 18:00 to 24:00 were taken as one category. Data sets from 8:00 to 18:00 were taken as other 
category of data sets.  

In accordance with the above clustering results, after identifying two categories of data sets, this 
research identified neural networks for different data sets, and each network weight of neural 
network ensemble. According to Figure 2 and 3 in Section 1.2 as well as Eq.2, neural network 
weights of two categories of data sets were identified.  

RBF neural networks of two categories of data sets determined by the above clustering analysis 
were respectively established. 75 groups of 85 groups of data were taken as training samples and 
the other 10 groups were testing samples. Structure of RBF neural network of daytime data sets was 
5-6-1, and that of nighttime was 7-7-1. The distribution density of SPREAD radical primary 
function of two neural networks was determined by trials. 
3.2 Data Cleaning and Forecasting Based On Neural Network Ensembles Model  

(1) Data Cleaning of Neural Network Ensembles Model  
According to abnormal data cleaning steps given in Section 1.3, MATLAB was used to obtain 

neural network forecasting results of the two data sets. For ei(x) of forecasting result (forecasting 
error of i-th neural network to Sample x), MATLAB curve fitting function was used to identify that 
for normal distribution ei(x) - N( i　 , 　i2), mean forecasting error I and variance I were 6.06 and 
2.6 respectively. Finally, according to Eq.4 and 5, outliers of forecasting errors of 85 groups of 
samples that did not meet the threshold values were detected (the threshold γ was taken as 0.6). 

 
Figure 4  Normal Distribution Curve Fitting of Forecasting Error 

According to the forecasting of 85 groups of data, the forecasting error ei(x) was acquired. For 
each point of forecasting error, Origin was used for normal distribution curve fitting and identified a 
forecasting error (outlier) between 10:00 to 12:00 a.m. on May 3, 2012. Neural network ensembles 
model then enforced forecasting of data sets after the elimination of outliers. 

 
Figure 5 Identify errors in each time period according to neural network 
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Figure 6 Identify outliers according to 3σ criterion of normal distribution 

(2) Neural Network Ensemble Forecasting Based On Data Cleaning  
This research used MATLAB to determine the fitting curve of normal distribution. After the data 

cleaning of outliers that did not meet the threshold, the sample data sets and neural network 
ensembles model without outliers can be used to generate short-term forecasting results. 

The comparison of relative difference in forecasting results between neural network ensemble 
(NN ensemble), neural network (NN) and regression analysis (RA) is shown in the following figure. 
Among the three methods, neural network model was a RBF neural network model, with a structure 
of 12-14-1. The distribution density of SPREAD radical primary function was 3. 75 groups of 85 
groups of data were taken as training samples and the other 10 groups were testing samples. 
MATLAB (RBF neural network forecasting) and SPSS (regression analysis) were used for 
forecasting and acquiring forecasting errors. For forecasting errors of the three methods, the relative 
difference was identified for comparison and the comparison results are shown in the following 
figure.  

 
Figure 7 A Comparison of relative difference between neural network ensemble forecasting model, 

regression analysis and RBF neural network model  
With the above method, daily changes of flight traffic volume in each sector and terminal 

airspace of Shanghai terminal airspace could be processed into statistics and forecasted, thus 
generating short-term traffic flow forecasting of the terminal airspace. 

4 Conclusion    

This research proposed to integrate sample difference analysis into self-adapting neural network 
ensembles model, in order to accomplish abnormal data identification. The data processing of 
abnormal forecasting samples replaced the previously subjective “cleansing abnormal data” during 
the data preparation phase. Instead, this paper adopted clustering analysis and self-adapting neural 
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network ensembles model to intellectually identify abnormal data, and acquired relatively more 
accurate forecasting results. As short-term forecasting of air traffic is also influenced by factors like 
temporary flights, military aircraft activities and traffic control, the mutability and randomness are 
significant. An in-depth study on mechanisms of flight operations and air traffic flow management 
can enhance the accuracy of short-term forecasting of air traffic flow. 
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