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Abstract. In this paper, a recovery algorithm of direction-of-arrival (DOA) Estimation based on 
weighted 1l  minimization for vehicular applications is proposed. We construct an overcomplete 
basis based on the largest eigenvector of the covariance matrix, aiming at a sharp spatial spectrum 
that exhibits the high-precision. The theoretical analysis and simulation results demonstrate that the 
proposed method has an excellent performance in the aspects of accuracy. 

Introduction 
With the rapid development of science and technology, vehicle communication system has 

aroused people’s attention [1][2]. As an important member of the system, cars can realize the 
interaction of information as well as the intelligent perception of the surrounding environment 
[3][4]. In order to get the azimuth of targets, DOA estimation plays an important role. 

There has existed a number of high resolution algorithms for DOA estimation. The subspace 
algorithms need a prior knowledge of source number, and relay on a large number of sampling data, 
or a high signal-to-noise ratio(SNR)[5]. In recent years, Donoho et al proposed the theory of 
compressed sensing [6], which provides a new idea for DOA estimation. In [7], Malioutov proposed 

1l -SVD, which combines the SVD step of the subspace algorithms with a sparse recovery method 
based on 1l  minimization. 1l -SVD algorithm achieves high resolution when the number of 
snapshots is small and the sources is correlated. In [8], according to the covariance matrix satisfy 
the asymptotic Gauss distribution, Stoica proposed SPICE algorithm. Based on [7], Yin proposed 

1l -SRACV algorithm to avoid the selection of regularization parameter [9]. To enforce sparsity, the 
literature [10] proposes a weighted 1l  minimization using the property of noise subspace. In [11], a 
weighted sparse representation model is proposed by applying Capon spectrum. However these 
methods need a prior knowledge of source number in order to ensure correct division between 
signal subspace and noise subspace or reduce the dimension of the received signal matrix. 

In this paper we presents a weighted 1l  minimization method for DOA estimation. The method 
utilizes the largest eigenvector instead of the signal subspace as a sparse vector . And we design a 
weighted 1l  norm matrix whose weights correspond to the largest eigenvector to obtain a better 
approximation of 0l  norm. Simulations are presented to prove the proposed algorithm effectively 
suppress the pseudo peaks and has higher estimation accuracy and resolution. 

Application Scenario and Sparse Representation Model  
In vehicle communication system, vehicles can achieve information interaction. Furthermore, 

vehicles need to perceive the location of surrounding vehicles. Fig 1 depicts an application scenario 
in intelligent transportation system. Vehicle A transmits signal to the target vehicle B in the road. At 
the same time, A receives the echo signal reflected by the target vehicle. The direction of the echo 
signal indicates the location of vehicle B. 
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Fig 1 Vehicle communication application scenario 

 
Fig 2 The sparse representation of DOA  

At the receiver, sensor arrays can receive the signal from all directions. We pose DOA estimation 
as a sparse signal representation problem, where we construct a sparse spatial spectrum. As shown 
in Fig 2, the solid point represents the real source, and the hollow point is the virtual source. And 
the number of virtual source is greater than the real source. Then this problem can cast as an 
overcomplete representation in terms of all possible source locations. 

DOA Estimation Based on Weighted 1l  Minimization 

Consider a uniform linear array of M sensors receiving K narrowband signals coming from 
directions { }, , , Kθ θ θ…1 2 . The received signal of the array is expressed as 

Y = AS + N                                 (1) 
where Y is M L×  dimensional received signal vector , S is K L×  dimensional source vector and 
N is M L×  dimensional additive Gaussian white noise vector. L is the number of snapshots taken 
from the array. The matrix A is the array steering matrix given by ( ) ( ) ( )1 2, , , Kθ θ θ= …  A α α α  

with the steering vector , where denotes 
transpose. 

Without loss of generality, the signal and the noise are assumed to be uncorrelated, then the 
sampling covariance matrix of the array data is given by 

1
L

=R YYH                                                                  (2) 

where H denotes Hermitian transpose. After eigenvalue decomposition of R, we can get the signal 
subspace matrix SU  and the noise subspace matrix NU . Since the signal subspace matrix spans the 
same space of the array steering matrix, i.e. ( ) ( )span span=SU A . Suppose that there is a full rank 
matrix C such that =SU AC , which means that the signal subspace is a linear transform of the 
steering vector matrix. So the largest eigenvector maxe  also can be expressed as 

( )max
1

 
K

k k
k

c θ
=

=∑ αe                                                              (3) 

where , 1, 2,...,kc k K=  is a linear combination factor. 
Under the sparse representation framework, we divide the whole detection area of interest into 

some discrete grid of potential locations. The grid of all potential DOAs is { }1 2, , , Pθ θ θ= …Θ    . Here 

P K . Then the steering vectors for each element of Θ  is  ( ) ( ) ( )1 2, , , Pθ θ θ = … A   α α α . Since 

Θ  is known, A  is also known. Expression (4) can be represented with the overcomplete basis 
matrix A  as 



max = +e Aβ ε                                   (4) 
where β  denotes the sparse signal vector that has only K nonzero components. ε  is the residual 
due to measurement noise and model errors.  
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The simplest version of the sparse representation problem without noise is to find the count of 
nonzero entries β , which is denoted by 

0
β . Since the 1l norm is not a good convex 

approximation of the 0l  norm. Although can’t get the optimal weights, we can find the property of 
it is that the value of the weights is smaller when p kθ θ= , larger when p kθ θ≠ .  

In view of the above analysis, our goal is to find a kind of weights that satisfy the property of the 
optimal weights. And apparently, the optimal array weights vector is closely related to the array 
steering vector of the true signal. For the steering vector of the virtual signal, the output power of 
the array will be reduced accordingly. Therefore the weights of 1l  norm is inversely proportional to 
the output power. The greater the signal powers, the smaller the corresponding weights. With the 
overcomplete basis matrix, we can obtain the weight is 

 ( )
2H

tt

i
Tw
i

=
∑ A e

                              (5) 

where t=1,2,…,T is the index of received signal frame. We consider few frames to average the 
weight value, and the result is more accurate. Then the weight matrix is  

[ ]1 2, , , Pdiag w w w= …W                            (6) 
We can construct a following optimization problem using 1l  norm constraint  



1

max 2

min

  s.t. η




− ≤

Wβ

e Aβ
                               (7) 

where 
1
  denotes 1l  norm，

2
  denotes 2l  norm and η  is a regularization parameter. The 

optimization problem can be solved by an optimization package called CVX. The DOA estimation 
can be obtained at dominant peaks of the reconstructed signal power spectrum. 

Experimental Results  

In this section, we name the proposed algorithm that uses the eigenvector weight as EVW- 1l , and 
we compare the performance of MUSIC, 1l -SVD[7], NSW- 1l [8]. In all experiments, we suppose 
that there is a ULA of 6 sensors with the spacing half of the signal wavelength. The angle range is 
evenly divided into 360 grids with 0.5° sampling from −90° to 90°. The number of sampling 
snapshots is 100. There are two far-field narrowband signals from 20°and 50° impinge on the array. 
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Fig 3 Spatial spectrum                  Fig 4 RMSE curve   

First, The spatial spectrum obtained by the above algorithms for the case of 2dB SNR is shown 
in Fig 3. It can be seen the MUSIC algorithm spectrum peaks is not sharp enough which leads to 
large estimation error when the signal to noise is relatively low. The 1l -SVD algorithm will appear 
spurious peaks with low SNR. The proposed algorithm can resolve the two signals. 
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Then we use root mean square error (RMSE) to evaluate the accuracy of the DOA estimation 

under varied SNR. Define the RMSE of the estimates from 50 trials as ( )
50 2 2

1 1

1RMSE
50 in i

n i

θ̂ θ
= =

= −∑∑ . 

In Fig 4, we can note that the RMSE of the proposed EVW- 1l algorithm is lower than other 
mentioned algorithms.  

Conclusion 
In this paper, we present a weighted 1l  norm method for DOA estimation for vehicular 

applications. Since the signal is reconstructed based on the largest eigenvector of the covariance 
matrix, we don’t need a prior knowledge of source number. Then the weight matrix of the largest 
eigenvector is used to enhance sparsity. Simulation results show that the proposed EVW- 1l  has 
higher estimation accuracy than the compared methods. And it is suitable for vehicular application. 
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