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Abstract. The classical MEKF algorithm represent the estimation error vector in the estimated 
attitude coordinates, without considering the deviation between the estimated attitude coordinate 
and the true attitude coordinate. GEKF algorithm used geometric transform introduced error 
consistent representation method, which solve the error vector representation inconsistency problem 
caused by the deviation. But the GEKF algorithm only consider the gyro’s constant drift, without 
considering the time related drift of gyro. To solve this problem, this paper proposes an IGEKF 
algorithm, the algorithm extended state variable dimensions, using the IGEKF algorithm to estimate 
the gyro constant drift and time related drift. Simulation results show that the IGEKF algorithm for 
estimation of gyro drift is more accurate than the GEKF algorithm, the filtering precision has 
improved more than GEKF algorithm.  

Introduction 

Using star sensors and gyros in combination has been widely used in satellite attitude system, 
gyro has higher frequencies which can be used to measure the satellite's three-axis angular velocity.  
We can get the platform’s attitude angle by integrating the angular velocity. But the gyro drift 
enable measurement error accumulated with time, which will seriously affect measurement 
accuracy. The measurement accuracy of Star sensor is high, because it has no error accumulation 
and drift phenomenon. But defect exist in the measurement of low frequency [1]. In order to 
determine the attitude of the satellite, we can use the combination of star sensor and gyro to 
overcome their respective shortcomings. 

The common attitude representation methods are Euler angles, quaternion, rotation vectors and 
MRPs [2, 3]. The quaternion is widely used in satellite attitude determination algorithms because it 
has small dimension and free of singularities. However, the traditional EKF algorithm does not 
solve the normalized constraint problem of the quaternion. In MEKF algorithm, attitude quaternion 
is represented by the product of estimated attitude quaternion and a deviation from that estimate. 
Using the MEKF algorithm can solve the quaternion normalization constraints problems [4, 5]. The 
main idea of the MEKF algorithm is use the EKF algorithm to estimate the vector part of quaternion, 
then use the corrected quaternion to represents the satellite attitude. The advantage of this algorithm 
lies in the estimated attitude quaternion satisfy both quaternion normalization constraints and can 
avoid the singular value to emerge. The MEKF algorithm was first applied to the determination of 
the satellite attitude in 1969 (SPARS) [6], and it is widely used in the satellite attitude determination 
system later. 

However, in practical application, because we do not know the actual attitude of satellite, so the 
EKF and MEKF algorithm expressed all vectors in the attitude estimation coordinates. Need to pay 
attention to that there is a deviation between the true attitude coordinates and estimated attitude 
coordinates. If vectors and its estimated values are expressed in estimation coordinates, a vector 
offset will emerge due to the deviation between the two coordinate systems. While the deviation 
value between two coordinates could not be ignored, the estimation precision for EKF and MEKF 
algorithms will be seriously affected. To solve this problem, Michael s. Andrle introduced an error 
consistency represent method in attitude determination problem [7, 8]. This method used a 
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geometric transformation to represent vector and its’ estimation value in a real coordinate. Based on 
the method proposed a GEKF algorithm for attitude determination system [7]. 

Because the literature [7] only give an algorithm that consider the constant drift of the gyro. The 
estimation accuracy will be affected because the gyro drift is compromised by constant drift and 
time related drift. In this paper, we first introduce error consistency principle, and applied it to in 
constant drift and time related drift of gyro model. We derived the IGEKF algorithm in a new gyro 
measurement model and completed the simulation comparison between IGEKF、GEKF and MEKF 
algorithm. 

Mathematical model of attitude determination 

In star sensor and gyro integrated attitude determination algorithm, the gyroscope measurement 
is used filter the star sensor measurement noisy, star sensor measurement is used to eliminate the 
gyro drift measurement, so as to achieve high precision attitude data. Attitude kinematics equations 
are used to describe the relationship between the platform attitude and angular velocity. 

Gyro measurement model 
Gyro is usually used to measure the angular velocity of the platform. Ideally, the measured value 

of the gyro is proportional to the rotational speed of the satellite body with respect to the rotational 
speed of the inertial system. But in practice, the gyro is affected by its own design, working 
mechanism, movement environment and so on, it inevitable consists drift and measurement noise. 

 The gyro measurement model is[9]: 

g v   ω ω d b η                              (1) 

whereω is the true angular velocity, d is time related drift for gyro,b is the gyro constant drift, vη  

is the measurement noise, which modeled as zero mean Gauss white noise. d and b satisfy the 
following equation 

               ,d bD   d d η b η& &                             (2) 

where dη 、 bη is zero mean Gauss white noise,D is diagonal matrix consisting of correlation time 
constant. 

The noise is written as the following vector 
  

v
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                                 (3)  

Its’ covariance is given by  ( ) ( ) ( ) ( )TE t t t   w w Q , 
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Star sensor measurement model 
Star sensor use the star as the measuring datum to get the star sensor's three axis attitude 

measurement, and the attitude of the satellite body coordinate system is obtained by a 
transformation. However, in engineering applications, due to the influence of installation errors, the 
error of star sensor measurement is inevitable, the actual measurement model of star sensor [10,11] 
is as follows: 

 b Ar v                                  (4) 
whereb is a vector in the satellite body coordinate system, r is a vector in reference coordinate 
system, A is an attitude rotation matrix from the reference coordinate system to the satellite body 
coordinate system, v is the measure error, modeled as zero mean Gauss white noise. 

Attitude kinematics equation 
Attitude quaternion can represent the platform’s attitude, and it does not appear singularity 
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problem in the attitude calculation, so it is widely used in the attitude determination algorithm. 
The attitude quaternion is defined as [12] 

4q   
TTq ρ                               (5) 

whereρ is the vector part for the quaternion, 4q  is the scalar part for quaternion. 
The attitude matrix is represented by quaternion as 

     22
4 3 3 4( ) ( ) 2 2q q    TA q ρ I ρρ ρ                      (6) 

Using the platform's attitude quaternion q  and the attitude angular velocity ω to described the 
attitude kinematics equations [13] 

1 1
( ) ( )

2 2
   q ω q q ω                           (7) 

Where, 

   4 3 3( ) , ( )
0

q       
          

T T

I ρ ω ω
q ω

ρ ω
                   (8) 

Error consistency representation and GEKF algorithm 

In order to solve the problem of the deviation between the estimated coordinates and the real 
coordinates, the geometric transformation is used to solve the Inconsistency of the error vector 
representation. The corresponding GEKF algorithm is an improvement of MEKF algorithm based 
on the new form of error vector representation. 

Principle of error consistency representation 
In EKF algorithm, the state variables are defined as fellow: 

ˆ         
TT T Tx x x q d b

                         (9) 

Where, 

   

ˆ

ˆ

ˆ

  

  
  

q q q

d d d

b b b

                                (10) 

According to the principle of optimal estimation, the optimal estimation x̂  of the state variable 
x is satisfied: 

     min E  Tx x                                (11) 

However, due to the vector representation is not consistent, the error vectorxdefined in this 
way consists deviation,The vector represent inconsistent problem is illustrated below,together with 
two vectors b and b̂ in formula b . 

Notes, 
1ˆd  q q q                                (12) 

As shown in Figure 1 (a) and 1 (b), the vector b and b̂ are represent the true gyro drift value 
and the estimated gyro drift respectively. Expressing b and b̂  in common coordinates, lead to the 
bias vector error db .Because in the practical application we do not know real satellite attitude, we 
can only expressed vector b̂ in the estimation coordinates. But vector b  is defined in the real 
coordinates, expressing b in the estimation coordinates, the error vector b is correlated with the 
attitude deviationdq . As show in Figure 1 (c) below, error vector b could not represent the actual 
error db . 
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b

( )A q ˆ( )A q

dq

db b

 
 (a)  Real      (b) Estimate    (c) Inconsistency 

Fig.1. Inconsistent representation 
Denoting two vectors ,b dand its’ error vector consistent representation as d ,db d .From Fig. 1(c), 

using the geometric transformation, the relationship between db  andb are defined below: 

ˆd (d ) d A q d d                             (13) 

So as, 
ˆd (d ) b A q b b                             (14) 

Denoted 

4d d dq   
TTq ρ

                           (15) 

Where, d Tρ is the vector part of the error quaternion. When dq is small, we can get the 
approximation [14] 

d 2dα ρ                                 (16) 
dα is an attitude angle error vector, attitude rotation matrix can be derived [15], 

 3 3(d ) : (d ) d   A q A α I α                         (17) 

Define 

d d d d   
TT T Tx α d b

                          (18) 

We can derive the following formula: 
d x C x                                (19) 

where,

4 3 4 3

3 3 3 3

3 3 3 3

1
ˆ( )

2
ˆ

ˆ

 

 

 

  
 
     

     

q 0 0

C d I 0

b 0 I

called the geometric transformation matrix.  

GEKF Algorithm 
Based on the principle of error consistency representation, literature [7] proposed a GEKF 

algorithm to solve the error represent inconsistency problem between the coordinates and the real 
coordinates. 

(1) State variable and state equation 
In literature[7],the measurement model of gyroscope is modeled as: 

  g v  ω ω b η                              (20) 

So the corresponding state variable is: 

   
TT Tx q b                              (21) 

The kinematics equation is approximate to: 
ˆ( ) a a   x f x F x G w                           (22) 

Where, 

3 4 3 3

1 1
ˆ ˆ( ) ( )

2 2a

 

    
 
 

ω q
F

0 0
 , 4 3

3 3 3 3

1
ˆ( )

2a


 

   
 
 

q 0
G

0 I
. 

 In the GEKF algorithm,the error vector is defined by means of the error consistency 
representation, and the state error vector is defined as : 
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d d d   
TT Tx α b                             (23) 

Differential form of the kinematics equation is:  
             d dg g x F x G w                              (24) 

Where,  

 
 

3 3 3 33 3

3 3

, ˆˆ ˆg g

 



     
    

                 

I 0ω I
F G

b Ib ω b



                   (25)  

(2) Measurement variables and measurement equation 
Taking the optical axis vector output of two star sensors as the measurement 

1 2   
TT Tz r r

                              (26) 

So the measurement equation is as follows: 
( )k k k kh z x v                              (27)  

Where, ( ) ( )k k k kh x A q r . 
(3) Filtering algorithm 
1) Prediction 
The state transition matrix for MEKF algorithm MEKFF is 

         
3 3

3 3 3 3

ˆ( )
MEKF



 

       
  

ω b I
F

0 0


                        (28) 

whereω%is the output of the gyro’s measure velocity. 
The differential form of the state transition matrix is obtained by discretization. 

2 2
6 6MEKF t t    Φ I F F                         (29) 

where t Sampling period. 
The state transition matrix of the GEKF algorithm is: 

1
k MEKF

Φ T Φ T                            (30) 
where, 

3 3 3 33 3 3 3
1

3 3 3 3

,ˆ ˆ

   

 

  
   

           
T

Ι 0Ι 0
T T

b I b I
                   (31)    

The prediction of the state variable is 

                / 1 1ˆ ˆk k k k x Φ x                              (32)    
Prediction error covariance matrix / 1k kP can use (33) to calculate.  

/ 1 1 1k k k k k k   T TP Φ P Φ TQ T                         (33) 

2) Gain 
Kalman gain is 

1
/ 1 / 1( )k k k k k k k k k


  T TK P H H P H R                     (34) 

Where, 

/ 1k k k kH H C , 

 
 

/ 1 1 / 1 3 3

/ 1 2 / 1 3 3

ˆ ˆ2 ( ) ( )

ˆ ˆ2 ( ) ( )
k k k k k

k
k k k k k

  

  

  
    

A q r q 0
H

A q r q 0
                    (35) 

3) Update  
State variable increment: 

ˆd k x / 1 / 1ˆ( ( ))k k k k k k kh C K z x                           (36) 

State variable update: 
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/ 1ˆ ˆ ˆdk k k k x x x                             (37) 
Attitude quaternion normalization: 

ˆ
ˆ

ˆ
k

k
k


q

q
q

                               (38) 

The update value of the error covariance is 
 6 6 / 1-k k k k k k k  TP M I K H P M                        (39) 

where, 

  1

/ 1

/ 1 3 3

/ 1 / 1 3 3

ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( ) ( )

k k k k k k

k k k

k k k k k k





 

  



  
 
            

T T

T

T

M C C C C

q q 0

b b q q I

                  (40) 

Improved GEKF Algorithm 

Due to the drift of gyro in the literature [7], only the constant drift is considered, but gyro also 
contains the time dependent drift, that is, according to the formula (1) to establish the gyro 
measurement model. In this paper, the improved GEKF algorithm is based on the new gyro 
measurement model, and the corresponding formula is derived as follows: 

State variable and state equation 
The state variables of the formula (21) are extended, that is  

   
TT T Tx q d b

                           (41) 

Kinematic equation is similar to formula (22),  
where, 

3 4 3 3

3 4 3 3 3 3

1 1 1
ˆ ˆ ˆ( ) ( ) ( )

2 2 2

a D 

  

      
 

  
 
 
 

ω q q

F 0 0

0 0 0

,

4 3 4 3

3 3 3 3 3 3

3 3 3 3 3 3

1
ˆ( )

2

a

 

  

  

   
 

  
 
 
 

q 0 0

G 0 I 0

0 0 I

.           (42) 

In the IGEKF algorithm, the error vector is defined by means of the error consistency 
representation, and the state error vector is defined as the error vector: 

d d d d   
TT T Tx α d b

                          (43) 

Differential form of the kinematics equation is:  
d dg g x F x G w                             (44) 

where, 

 

 

 

3 3 3 3
ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

g D

 
               
                                       
                                      

d b ω I I

F d d d b d ω d d

b d b b b ω b b







               (45) 

3 3 3 3 3 3

3 3 3 3

3 3 3 3

ˆ

ˆ

g

  

 

 

  
     
     

I 0 0

G d I 0

b 0 I

                                  (46) 

Measurement variables and measurement equation 
Measurement variables and measurement equation is like formula (26) and (27). 
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Filtering Algorithm 
(1) Prediction 
The state transition matrix of MEKF algorithm MEKFF is 

3 3 3 3

3 3 3 3

3 3 3 3 3 3

ˆ ˆ( )

MEKF D

 

 

  

         
 
 
  

ω b d I I

F 0 0

0 0 0



 
whereω%is the output of the gyroscope measurement. 

The differential form of the state transition matrix is obtained by discretization. 
2 2

9 9MEKF t t    Φ I F F                         (47) 

where t Sampling period. 
The state transition matrix of the improved GEKF algorithm is: 

1
k MEKF

Φ T Φ T                            (48) 
where, 

3 3 3 3 3 3

3 3 3 3

3 3 3 3

ˆ

ˆ

  

 

 

 
 
     
     

Ι 0 0

T d Ι 0

b 0 I

                           (49) 

3 3 3 3 3 3

1
3 3 3 3

3 3 3 3

ˆ

ˆ

  


 

 

 
 
     
 
    

T

T

Ι 0 0

T d I 0

b 0 I

                          (50) 

Predictive value of state variable can be calculated by formula (32),Prediction error covariance 
matrix / 1k kP can be calculated by formula (33), whereT and1T 1T can be replaced by formula (49) 
and (50). 

(2) Gain 
Kalman gain:  

1
/ 1 / 1( )k k k k k k k k k


  T TK P H H P H R                     (51) 

where, 

/ 1k k k kH H C , 

 
 

/ 1 1 / 1 3 6

/ 1 2 / 1 3 6

ˆ ˆ2 ( ) ( )

ˆ ˆ2 ( ) ( )
k k k k k

k
k k k k k

  

  

  
    

A q r q 0
H

A q r q 0
                    (52) 

(3) Update  
The state variables increment and state variables of attitude updating, attitude quaternion 

normalization can be calculated by formulate (36) (37) (38). 
 The update of the error covariance is 

 9 9 / 1-k k k k k k k  TP M I K H P M                        (53)  

where, 
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  1

/ 1

/ 1 3 3 3 3

/ 1 / 1 3 3 3 3

/ 1 / 1 3 3 3 3

ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( ) ( )

k k k k k k

k k k

k k k k k k

k k k k k k





  

   

   



   
             
             

T T

T

T

T

M C C C C

q q 0 0

d d q q I 0

b b q q 0 I

               (54)  

Simulation analysis 

For this simulation is based on IGEKF algorithm, the satellite platform's attitude is obtained by 
using the IGEKF algorithm to processed the star sensor and gyros’ measurement. And the 
simulation results were compared with MEKF and GEKF algorithm. 

Parameter setting  
Sensor measurement noise and initial value of the filter as shown in table 1: 

Table 1 algorithm parameter settings 

Star Sensor Measure noise ''
v =1 ,Data update frequency 4HZ 

Gyro 
Measure noise ''0.1 /b s   , '' 20.01 /d s  , 3 31/ 3600 /D s  I   

Data update frequency 8Hz 

Initialization 
2 2 2

3 3 3 3 3 3( , , )v d bdiag     Q I I I   
12 11

6 6 0 9 92.5 10 , 2.35 10 
    R I P I   

Simulation analysis 
This simulations are performed using MEKF 、GEKF and IGEKF algorithm respectively, take 

1000 Monte-Carlo simulation results for statistics, the root mean square error of the different 
algorithms, the corresponding attitude angle estimation and gyro drift estimation. 

Table 2 shows the root mean square error of the attitude angle of the different algorithms. 

Table 2 different algorithms of RMSE 

 Attitude Angle RMSE ( '' ) 
Algorithm Roll Pitch Yaw 
Measure 2.2407 1.0964 1.4689 
MEKF 0.3601 0.3390 0.3631 
GEKF 0.2678 0.2142 0.2108 
IGEKF 0.2380 0.1771 0.2040 

As can be seen from table 2, under the same simulation conditions, compared with the MEKF 
algorithm ,the RMES for the GEKF algorithm is significantly lower than the GEKF. Compared with 
GEKF algorithm, the attitude angle estimation accuracy of IGEKF algorithm is improved. 

Figure 2 gives the attitude angle estimation for different algorithms. 
Figure 3 gives the attitude angle estimation error for different algorithms. 
From Figure 2 we can see all the three algorithms can estimate the platform attitude angle, and 

figure 3 shows the three algorithms of attitude angle estimation error, as can be seen, the GEKF 
algorithm and IGEKF algorithm can make the attitude angle estimation error within 0.6 , and 
IGEKF algorithm can reduce the GEKF algorithm’s estimation error in some extent, and use MEKF 
algorithm of the estimation error is fluctuated within 1.2 , filtering effect is a bit poor. 

The gyro drift estimation of different algorithms is given in Figure 4. 
As can be seen from Figure 4, the GEKF algorithm has a great improvement on the gyro drift 

estimation compared to the MEKF, the IGEKF algorithm is more accurate than the GEKF algorithm 
for the estimation of the drift. The MEKF algorithm has some deviations in the gyro's drift 
estimation, especially the drift rate is very small, and the estimated performance will be severely 
degraded. 
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Fig.2. Attitude Angle Estimation             Fig.3. Attitude Angle Estimation Error 

 

Fig.4. Gyro Drift Estimation 

Conclusion 

In this paper, to deal with the problem that error vector representation is not consistent in 
traditional MEKF algorithm. We applied the GEKF algorithm to the satellite attitude determination 
system and make some improvements in order to estimate the gyro’s time related drift. First, 
extending the state variables of the GEKF algorithm. Next, using a geometric transform to solve the 
vector error inconsistency representation. Then take the MEKF to estimate the attitude quaternion 
increments、gyro constant drift increments and time related drift increments. Finally, using attitude 
correction to achieve the satellite attitude. Simulation results show that the IGEKF algorithm 
proposed in this paper can estimate the gyro's constant drift and time related drift accurately, and the 
filter accuracy has improved significantly compared with the GEKF algorithm. 
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