

Development of the Communication Interface for the Cognitive Model of
Complicated Human-Computer Interaction Task

Xianliang Mu, Shaoyao Zhang, Yu Tian, Lifen Tan, Chunhui Wanga

National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training
Center, Beijing, 100094, China
aemail:chunhui_89@163.com

Keywords: Real-Time Communication; Adaptive Control of Thought-Rational; User Datagram
Protocol; Multicast; Rendezvous and Docking

Abstract. The cognitive modeling of the HCI task has been a hot area in HCI research. And it is an
important method to understand the cognitive decision process and mechanism behind operators’
behavior. Since the software of HCI task and the software of cognitive modeling generally run on
different platforms, it is critical to develop the communication interface between different platforms,
especially in the cognitive modeling research of the simulated manual RVD task. To realize a
real-time interaction between the cognitive model developed by Common Lisp language and the
task simulator developed by VC++ language, this paper developed the communication interface
between these two platforms. And the interface is developed based on UDP and the multicast
technique. This paper proposed a solution with the foreign-function interface feature of Common
Lisp Language to solve the problem that Common Lisp Language doesn’t support the multicast
technique directly. Test results showed that the communication interface could support data sending
and receiving and fulfill the requirement of the real-time communication.

Introduction

Manual RVD (Rendezvous and Docking) task is a complicated human-computer interaction task
for astronauts. Also this task is a critical research content for space ergonomics and long-duration
space flight in the future [1] [2]. Baozhi Wang, Guohua Jiang, Jiangang Chao (ET al.) designed and
realized a semi-physical ergonomics experimental system for the purpose of studying ergonomics
problem in manned RVD task. This platform accurately simulated the RVD task in dynamics and
could automatically generate behavior and performance data of human [3].

Recently, the method called cognitive modelling becomes more and more popular in the research
of cognitive science [4]. In this method, a calculation model is established to evaluate the cognitive
theory and phenomenon. Compared with traditional experimentation, cognitive modeling costs
much less and can predict task performance, workload and probable fault quantitatively, which is a
new way to evaluate the design of human-computer interface. For this reason, we built a cognitive
model for RVD task and this model was established based on the cognitive architecture of Adaptive
Control of Thought-Rational (ACT-R) [5]. The cognitive architecture is an expatiation for the
architecture of brain at the abstract level, which explains how the brain think [6].

In order to evaluate and verify the cognitive model, we should guarantee that the cognitive
model and the subjects work at the same environment. So the cognitive model should communicate
with the simulator in real time. The method of communication is usually based on network.
Internationally, people usually take the method of UDP (User Datagram Protocol) [7, 8].

For the purpose of realizing real-time communication between cognitive model and simulator [9],
we developed the interface between them. And the UDP can satisfy the requirement of real-time
interaction. Compared with TCP (Transmission Control Protocol), the UDP is faster in the
transmission speed and costs less to run in the system. However, the UDP is less reliable in the data
transmission. UDP supports unicast, broadcast and multicast. Multicast means sending datagram to
a mainframe unit in the network. And a mainframe can join in one or several multicast unit [10]. So
multicast satisfies the requirement of dynamics and can save network bandwidth to reduce the

2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2016)

© 2016. The authors - Published by Atlantis Press 1377

workload of network.
The architecture of ACT-R is established based on Common Lisp language. Unfortunately, the

ACT-R architecture doesn’t supply the network communication interface. So we have to realize the
communication protocol based on Common Lisp language. In this paper, Allegro Common Lisp
was chosen to realize the communication protocol. It supports the TCP and UDP, but can’t support
multicast directly [11].

In this paper, we took use of the characteristic of supporting Foreign-Function Interface (FFI) in
Common Lisp language to realize the UDP multicast protocol. Using C++ language to realize the
UDP multicast protocol has been a mature technology, so it is not a key point in our paper.

Overall scheme

In this simulated Manual RVD task, cognitive model simulates the astronaut to do the manual
RVD task. The simulator stands for the task environment. In terms of communication interface, the
cognitive model based on ACT-R architecture is a client and the simulator is a server. The overall
scheme is shown in Fig. 1.

Client: Cognitive Model of
Complicated Human‐

Computer Interaction Task

Server: Simulator of
Complicated Human‐

Computer Interaction Task

Communication
Interface

Send Receive

SendReceive

IP Address: 234.5.6.110
Port: 8008

IP Address: 234.5.6.23
Port: 8008

UDP Multicast Protocol

Fig.1. Overall scheme of the communication interface
In this scheme, two multicast units were established. And the unit-1’s address is “234.5.6.110”

with a port of “8008”, which is used to send message to server. While, the unit-2’s address is
“234.5.6.23” with a port of “8008”, which is used to send message to client. The workflow of the
system is followed: (1) client receives the real-time task information from server; (2) the cognitive
model simulates human’s cognitive behavior and send out control commands; (3) the sever receive
control commands from client and change the real-time task information based on the commands;
(4) circulate from (1) to (3) until the task completes.

In the case of sever, UDP multicast communication protocol was realized based on Winsock 2
using C++ language [12]. As a mature technology, this part won’t be repeated here. Now, we talk
about how to establish UDP multicast communication protocol through Common Lisp language.

The realization of client’s communication interface

The cognitive model based on ACT-R is developed by Common Lisp language. Common Lisp
supports the characteristic of Foreign-Function Interface (FFI). FFI allows the running Common
Lisp program to load code file from foreign language to realize the function of foreign language.

Common Lisp can’t support multicast directly, so this paper attends to realize the client’s UDP
multicast protocol using the characteristic of FFI in Common Lisp. The protocol includes the UDP
sending function and UDP receiving function. Firstly, realize the UDP sending function and UDP
receiving function based on Winsock 2. Then, compile the source files to DLL (Dynamic Link
Library) files. And with that, load these two DLL files into Common Lisp code. In the end, define
corresponding Common Lisp function using FFI. As a result, we can call corresponding functions in
Common Lisp.

The client run in the Windows 7 system. The development environment of cognitive model is

1378

Allegro Common Lisp 9.0 and the development environment of C++ is Microsoft Visual Studio
2010. The corresponding Winsock 2 functions are shown in Table 1.

Table 1 Introductions of the Winsocks 2 functions used

Name Description
bind Bind a socket at an address.
closesocket Close an existing socket.
recvfrom Receive a datagram and save the source address.
sendto Send data to specified destination address.
setsockopt Set options of a socket.
socket New a specified type of socket.
WSACleanup Stop to use the DLL file, Ws2_32.DLL
WSAStartup Initiate to use DLL file, Ws2_32.DLL

3.1 UDP multicast sending function
The flow chart of UDP multicast sending function based on Winsock 2 is shown in Fig. 2 (a).

Data generation
(Type conversion and Adding

identification on the head of data)

New and set Socket

Call sendto function to send data

Close and clear Socket

New and set Socket

Call recvfrom function to receive
data

Data processing (extracting useful
information and type conversion)

Close and clear Socket

(a) (b)

Fig. 2. Flow charts of two functions: (a) flow chart of UDP multicast sending function; (b) flow chart of UDP
multicast receiving function

Data generation means changing the 6 DoF (Degree of Freedom) control instructions of
cognitive model into char data that can be sent by UDP protocol. And there are two progress:
conversion of data from float to char and add identification on the head of char data. Then, call
WSAStartup function and socket function to new a socket. And with that, call setsocktopt function
to complete the setting of address allowed to be reused. Once again, call sendto function to send
char data to multicast address 1 (234.5.6.100, port 8008). In the end, call closesocket function to
close socket and call WSACleanup function to clear data.

The statement of sending function is: int sendFloatArray (float original_control_out[6]). The
formal parameter stands for the output of 6 DoF control instructions which is generated from
cognitive model.

UDP multicast receiving function
As shown in Fig. 2 (b), it is the flow chart of UDP multicast receiving function based on

Winsock 2. Firstly, call WSAStartup and socket functions to new a socket. Secondly, call setsockopt
function twice to complete the setting of address allowed to be reused and join in the setting of
multicast. Thirdly, call bind function to bind the new socket to multicast address 2 (234.5.6.23, port
8008). And with that, call recvfrom function to receive the char data sent from multicast address 2
in the server. Then conduct data processing to delete the identification on the head of char data and
extract the useful data to converse the char data into float data. In the end, close the socket and clear
the data.

1379

Test results of the communication interface

The server is a simulator that run in a computer with the operating system of Windows XP, while
the client is a cognitive model that run in a computer with the system of Windows 7. These two
computers are connected through reticle. The test includes client sending test, client receiving test
and real-time running test.

Client sending test
The cognitive model, as a client, will sent the 6 DoF data to simulator. In the server computer,

we use the software of Wireshark 1.10.7 to conduct network capture. The results are “0d 20 01 01
00 00 00 0d 07 00 00 bb aa 44 55 66 06 00 08 99 0b ff 0f cd 0a ff 0f 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00” which are expressed in hexadecimal, as shown in the Fig. 3 (a). The useful data
is “66 06 00 08 99 0b ff 0f cd 0a ff 0f”, which is the same with the data captured by C++ program.
The results show that the client multicast sending function completes the data conversion and
sending.

(a) (b)

Fig.3 (a) The data server received from client; (b) the useful data client received from server
Client receiving test
The server sends real-time information to multicast address 2 (234.5.6.23, port 8008)

continuously. And the client receives data and prints out the results. As shown in Fig. 3 (b), the
client multicast receiving function has received the data sent from server successfully and
completed the extraction of useful data and conversion of data type.

Real-time running test
The server runs the simulated program and the client runs cognitive model. The cognitive model

will call communication interface function to communicate with simulated program. The running
results showed that our communication interface could satisfied the requirement of real-time
interaction.

Conclusion and expectation

In this paper, in order to solve the problem that Common Lisp can’t support the multicast directly,
we developed a communication interface based on UDP multicast protocol to realize the real-time
interaction between cognitive model and simulator in the task of simulated Manual RVD. We have
compiled the multicast sending and receiving functions into DLL files, loading these files into
Common Lisp and defining corresponding functions. The test results show that our communication
interface could satisfied the requirement of real-time interaction.

The solution in this paper can be contributed to all kinds of cognitive modeling work of
complicated human-computer interaction tasks.

1380

Acknowledgement

This study was supported by the Foundation of Key Laboratory of Science and Technology for
National Defense (No. 9140A26070215KG57417, No. 9140C770102140C77313), the Feitian
Foundation of China Astronaut Research and Training Center (No. FTKY201505), the Foundation
of National Key Laboratory of Human Factors Engineering (No. SYFD140051802), and the
Experimental Technique Youth Fund Project (No. SYFD1400618).

References

[1] Shanguang CHEN, Guohua JIANG, Chunhui WANG. Advancement in Space Human Factors
Engineering [J]. Manned Spaceflight, 2015 21(2) 95-105.

[2] Shanguang CHEN, Chunhui WANG, Xiaoping CHEN, Guohua JIANG. Study on Changes of
Human Performance Capabilities in Long-duration Spaceflight [J]. Space Medicine & Medical
Engineering, 2015 28(1) 1-10.

[3] Baozhi WANG, Guohua JIANG, Jiangang CHAO, ET al. Design and Implement of Manned
Rendezvous and Docking Ergonomics Experimental System [J]. Space Medicine & Medical
Engineering, 2011 24(1) 30-35.

[4] Fum, D., F.D. Missier, A. Stocco. The Cognitive Modeling of Human Behavior: Why a Model
is (Sometimes) Better than 10,000 Words [J]. Cognitive Systems Research, 2007 8(3) 135-142.

[5] Anderson, J.R., D. Bothell, M.D. Byrne, ET al. An Integrated Theory of the Mind [J].
Psychological review, 2004 111(4) 1036-1060.

[6] Anderson, J.J.R., C.J. Lebiere. The Atomic Components of Thought [M]. Psychology Press,
1998.

[7] Byrne, M.D., A. Kirlik. Using Computational Cognitive Modeling to Diagnose Possible Sources
of Aviation Error [J]. The international journal of aviation psychology, 2005 15(2) 135-155.

[8] Dimperio, E., G. Gunzelmann, J. Harris. An Initial Eevaluation of a Cognitive Model of UAV
Reconnaissance. Proceedings of the Seventeenth Conference on Behavior Representation in
Modeling and Simulation [C]. 2008 165-173.

[9] Shaoyao ZHANG, Shanguang CHEN, Chunhui WANG, ET al. An Integrated Cognitive Model
of Manual Rendezvous and Docking Task Based on ACT-R Cognitive Architecture [J]. Space
Medicine & Medical Engineering, 2015 28(2) 109-116.

[10] W.Richard Stevens. TCP/IP Detailed Annotation Roll 1 [M]. China Machine Press, 2005.

[11] Peter Seibel. Practical Common Lisp Programming [M]. Press and Telecom Press, 2011.

[12] Haimin SUN. Master Windows Sockets Network Development-Realization Based on Visual
C++ [M]. Press and Telecom Press, 2008.

1381

