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Abstract. The Ant Colony System combined with Variable Neighborhood Search (VNS-ACS) was 
proposed to relieve the limitations of typical Ant Colony Algorithm (ACA) vulnerable to stagnation 
and random results. Based on the idea of ACS algorithm, VNS-ACS algorithm improves the path 
search strategy and the local path optimization by combining with Clark-Wright saving algorithm 
(C-W), roulette algorithm, VNS and segment setting parameters. Accordingly it can make 
deterministic and stochastic equilibrium, consequently improving the global optimization ability of 
the algorithm, convergence speed and stability. Several experimental results in the vehicle routing 
problem are presented to demonstrate its advantages over ACS in the optimal path accuracy and 
reliability of the algorithm. 

1. Introduction 
In 1959, Vehicle Routing Problem (VRP) was initially introduced by Dantzig and Ramser [1]. In 

1964, Clark and Wright [2] proposed an effective heuristic algorithms Clark-Wright saving 
algorithm for VRP. Then VRP has become the frontier and hot topics in the field of Operations  
Research [3]. Up to 20% of the total cost of transportation can be saved with rational planning of 
transport routes. This paper mainly focuses on the Capacitated Vehicle Routing Problem (CVRP). 
The VRP belongs to the category of NP Hard problems, meaning that the computational effort 
required to solve this problem increases exponentially with the problem size.  

The solution techniques to the VRP can be categorized as exact approaches or heuristics. For 
example, there is Branch and bound (Fisher 1994 [4]) that proposed to find every possible solution 
until one of the best is achieved in the exact approaches. There are constructive methods [3] and 
2-phase algorithm [5] in the heuristics, which perform a comparatively limited exploration of the 
search space and typically produce high quality solutions within reasonable computing times. 

In the past three decades, great efforts have been made on the development of algorithms based 
on metaheuristics which perform a deep exploration of the most promising regions of the solution 
space and produce solutions of higher quality than the classical heuristics, mainly using two 
principles: local search and population search. The local search, which is an intensive exploration of 
the solution space, consists of tabu search (TS) and simulated annealing (SA)[6]. Hansen and 
Maladenovic put forward a novel track heuristic algorithm, namely Variable Neighborhood Search 
algorithm (VNS). This algorithm is simple and easy to combine with other algorithms. To elaborate 
further, a large number of experiments show that VNS can find the approximate optimal solution to 
the combinatorial optimization problem in a modest time and can be used to local search [7]. 
Population search consists of genetic algorithm (GA) [8] that recombines the good solution. GA is 
vulnerable to premature and convergence. The global solution of TS is poor and SA searches very 
slowly. The other classical population search is ant colony system (ACS) [9]. By comparison, Bernd 
Bullnheimer proved that ACS can produce more competitive results than other metaheuristic 
algorithms[10]. However, the ACS is vulnerable to stagnation and random results. 

In this paper, for the sake of improving the solution to the CVRP quality, we present and 
illustrate a highly efficient metaheuristic algorithm called VNS-ACS, combining VNS with ACS 
algorithm and overcoming the defect of ACS. It shows that the ant paradigm can produce 
competitive results, meanwhile improve the stability of results at a fraction of the computational 
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cost of the best approaches. The remainder of the paper is organized as follows. First, we briefly 
describe the CVRP and the two basic ant system phases, construction of vehicle routes in section 
2.1 and pheromone update rule in section 2.2. Second, new algorithm is introduced to improve the 
solution quality in section 3. The computational experiments in section 4 compare our VNS-ACS to 
ACS for the VRP Solomon Instances in the paper. Finally, section 5 concludes the paper. 

2. Ant Colony System for CVRPs 
The formal description for the CVRP is as follows: suppose that a common depot v0 has a fixed 

fleet of delivery vehicles of uniform capacity Q that must service known customer demands for a 
single commodity at minimum transit cost, namely designing a set of delivery routes that satisfy 
constraints: 

i. Every customer is visited exactly once by exactly one vehicle. 
ii. Each route starts and ends at the depot. 

iii. The total demand of each route does not exceed vehicle capacity Q. 
 M. Dorigo et al proposed a modified Ant Colony System (ACS)[9], which achieves a better 

balance between exploiting the existing routes and exploring the new path with the adjustment on 
state transition rule and pheromone updating strategy which eventually improves the global 
solution. Usually VRP tour optimization is divided into two parts: the first constructing routes by 
using ACS, and then optimizing tour by using the 2-opt algorithm. 

2.1 Construction of vehicle routes  
In the VRP ant colony system, a route is that kth ant sets out from v0 and successively selects 

customer vi to visit and return to v0 before it exceeds the capacity. All routes guarantee that all 
customers are served only once. The construction of vehicle routes is done as follows: first put the 
unvisited customers into the candidate list clk , then put the visited customers into the tabu list tabuk, 
kth ant selects next customer from clk according to a pseudo−random−proportional rule[9] that can 
be stated by eqs.(1)-(2).  
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Where τij is the pheromone left by other ants, dij is the distance between customer i and customer 
j, ηij is heuristic function which evaluates the utility of move customer j from the current customer i. 
α is a parameter which determines the importance of pheromone and β is a parameter which 
determines the importance of distance. q is a value chosen randomly with uniform probability with 
an interval [0, 1], q0( 0 [0,1]q ∈ ) is a parameter which determines the relative importance of 
exploitation versus exploration in eq.(1), namely the probability of random selection. J is a 
probability distribution function given by eq.(2) and we choose next customer j from current 
customer i according to J and roulette algorithm[11]. 

2.2 Pheromone updating rule 

2.2.1 Local updating (Offline update by single ant) 
After sth ant has visited all customers and built a tour, pheromone is updated on all edges 

according to eqs.(3)-(4) in order to reduce the probability that next ant repeats tour and expand the 
search space, thereby avoid local optimal solution. 
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Where Lnn = min{dij} and τ0 is the initial pheromone concentration of each path. ρ is the local 

pheromone evaporation factor and also is negative feedback factor.  

2.2.2 Global updating (Offline update by ant colony) 
In ant system, the global updating rule is implemented by eqs.(5)-(6). After all ants have built 

their tours, we only reinforce the pheromone of the shortest tour achieved so far and the pheromone 
of other tours gradually volatilize so as to make the later search process more guided. 
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where Q is pheromone intensity, Lgb is the globally best tour so far and µ is global pheromone 
evaporation factor and also is positive feedback factor( [0,1]µ∈ ). ∆τij is the pheromone increment on 
the edge (i, j) of this iteration. 

2.3 Route improvement strategies 

Mixed in the ant colony algorithm local optimization algorithm to improve each constructed 
solution can further shorten the length of the route, thus speeding up the convergence rate of ant 
colony algorithm. After all ants have constructed the tours completely, optimize the shortest tour 
based on local optimization, then achieve a new tour and update pheromone of this new tour. The 
construction of vehicle routes, pheromone update and route improvement strategies, above three 
steps are repeated for a given number of iterations to find the optimal tour. The route improvement 
strategy is that it typically adopts 2-opt heuristic [12] to exchange the customer locations of the tour 
after achieving the shortest tour by ACS. Although this algorithm can achieve the best solution, the 
result is very random and unreliable. To improve the robustness, we propose the VNS-ACS 
algorithm, described in the following section. 

3. VNS-ACS Algorithm 
The VNS-ACS algorithm is the combination of VNS and ACS to improve the robustness. It removes the 

local search routine from the basic scheme of the VNS algorithm and applies the ACS to produce better 
solution. Firstly, improve the route search strategy of the ACS, secondly construct the initial solution, and 
finally local optimization of initial solution by VNS algorithm. VNS provides a higher quality solution for 
ACS. It guides the ACS to construct new solutions and expand the exploration of space. As a result, the 
number of iterations of the algorithm improves the stability and accuracy of the optimal solution. 

3.1 Route search strategy 
Since the start and end of every customers route are the depot, we can combine ACS with the 

idea of saving algorithm [2] according to the eq.(7) where sij is the saving factor. The greater the 
saving factor, the greater the probability that the edge is selected, therefore the shorter the total 
length of the path. Adding the saving factor according to the eqs.(8)-(9) could make the global 
solution better. 
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When roulette random selection is empty, we randomly select one customer j from the clk and 
judge whether the new total weight of this route is overweight or not. If it is overweight, the vehicle 
returns to the depot. If not, add j to the tabuk. 

3.2 Parameter Settings 
   Generally, the number of ants in the ACS is two-thirds of customers. There are 7 main 
parameters affecting the performance of the algorithm, respectively as α, β, γ, q0, ρ, µ, Q. Among 
them, the greater the value of α and Q, the better the positive feedback, thus strengthening the 
collaboration and is vulnerable to be premature. The greater the value of β, the easier that ant search 
neighborhood customers to find the shortest routes but can lead to local optimization. The greater 
the value of γ, the better the global searching ability. With the increment in the value of α and β, 
convergence abilities are improved, the search space is decreased and randomness weaken that may 
lead the algorithm into local optimum. The smaller the value of µ, the random and global searching 
ability of the algorithm is enhanced, but the convergence speed is reduced. In the initial stage of the 
algorithm the speed of finding the best solution is very fast as proposed by Luca Maria Gambardella 
[13] in the ACS’s classic convergence curve. The new optimal solution appears after 50% of the 
total number of iterations, but pheromone of stagnation emerges [13]. 
    According to the above analysis we set the parameters by making subsections. In the initial 
stage, parameters setting is small in order to expand the search space, that is, α=0.8, β=2, γ=3, ρ=0.9, 
µ=0.9, Q=10, q0=0.01. When the length of the best solution changes slightly, parameters increase in 
order to reduce the search space and adjust the pheromone of routes and ensure its convergence to 
the global optimum solution, that is α=1, β=4, γ=4, ρ=0.1, µ=0.1, Q=10, q0=0.2. 

3.3 VNS local path optimization 
The variable neighborhood search procedure (VNS) guides local search and escape local minima. 

VNS mainly adopts local operations, namely or-opt neighborhood, swap neighborhood, 2-opt* 
neighborhood and cross the neighborhood[14], and combines them randomly to expand the search 
space and increase the optimization speed and higher convergence ratio. Apply the VNS to optimize 
the initial solution generated by ACS, compare the length of solution optimized with the best 
solution achieved so far and update the global pheromone of the shorter solution. After a given 
number of iterations, we can get the best solution. 

3.4 Algorithm implementation 
Step 1: Initialization parameters, the number of iteration Nmax, the number of ants m, the 

currency iteration time N = 0, the length of best solution Lgb = ∞. Input data and calculate dij, sij, τ0 
according to eq.(3), then store in the respective array. 

Step 2: Put all ants in the depot, tabuk=1, the 1th ant construct tour according to eqs.(8)-(9) and 
load, then update tabuk=1 and local pheromone until all customers are visited. 

Step 3: Repeat Step 2 until all ants visit all customers. Apply the VNS to adjust the construction 
of the shortest tour in this iteration so that it shortens the tour, if the length of new tour is shorter 
than the length of best solution as a result replace it and update its pheromone and Lgb. Otherwise, 
update the pheromone of the best solution. 

Step 4: N = N + 1, if N < Nmax, clear tabuk and load and jump to Step2 and Step 3. Else iteration 
ends and input the best solution. 
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4. Experiment simulation and results analysis 

4.1 The effectiveness of the algorithm 
In this section, we verify the effectiveness of VNS-ACS algorithm by the instances applied: 

Solomon Instance, such as eil22, eil30, r101, rc101. The running environment is in the 64 bit 
Window8.1 system, Intel (R) Core (TM) i7-4700CPU@3.60GH processor, Matlab 2012a. In order 
to verify effectiveness and robustness, we compared ACS with VNS-ACS. The parameters of 
VNS-ACS are as follows. Nmax=50, the section node is a quarter of Nmax, other parameters are set 
according to section 3.2. The parameters of ACS are, α=1, β=4, ρ=0.5, µ=0.1, Q=10, q0=0.2, 
Nmax=100. Simulate the above cases 1000 times with both algorithms. Table 1 and 2 show the 
results, where t is program running time for each case, ε is error and r is robustness, which are given 
by eqs.(10)-(11). 

= ( ) *best - ave best 100%e                                                           (10) 
*r m n 100%=                                                                     (11) 

In the formula, best is the optimal length and ave is the average length of iteration. m is the 
number of times finding the optimal solution and n is equal to 1000. 

Tab 1 The simulation result of VNS_ACS 
case best(km) ave(km) ε(%) r(%) t(s) 
eil30 505.0111 505.0111 0 100 10 
eil22 375.2798 375.2798 0 100 4 
r101 335.2688 335.3107 0.01 90 6 
rc101 294.9944 294.9944 0 100 4 

Tab 2 The simulation result of ACS 
case best(km) ave(km) ε(%) r(%) t(s) 
eil30 505.0111 514.1918 1.8 0.8 5 
eil22 375.2798 377.5934 0.6 18.5 3 
r101 335.2688 336.5712 0.38 26 3.5 
rc101 294.9944 295.0237 0.01 96.6 3.5 

4 .2 Results analysis 
Compare Table 1 with Table 2, shows that the robustness(r) of the new algorithm is better, error(ε) is 

smaller and reliability is higher. 
From the Fig.1, the length of optimal solution generated by VNS-ACS is superior to reference [16], the 

accuracy of optimal solution improves 3%, consequently the convergence is improved. 
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Fig.1. Experimental Result of eil22 case 

5. Discussion and Conclusions 
ACS algorithm is vulnerable to stagnation and produces random results. In this paper, we apply 

VNS to guide ACS to search routes in the more larger space and presented VNS-ACS a novel 
approach to CVRP, which overcome the shortcomings of ACS. Although the results presented in 
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this paper show the robustness of VNS-ACS is better than the ACS and the error rate is smaller. 
However, the calculation time increases. VNS-ACS is the foundation of solving the large scale VRP. 
In the future we will research how to shorten the calculation time and solve the VRP. 
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