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Abstract. Particle swarm optimization (PSO) has been a popular research area in artificial 
intelligence technology, where the two issues of theoretical analysis and premature convergence have 
been the focus of attention. However, due to complex dynamics in particle swarm, the former has 
been conducted only in simplified systems. And the latter has been dealt with only by introducing 
some additional operations, which inevitably increases the complexity of PSO and makes the 
theoretical analysis more difficult. To handle the above problems, we already proposed a unified and 
simplified formula for position updating in the existing algorithms, but that formula depends heavily 
on the hypothesis of that new positions of particles are centered on their weighted experience. In this 
paper, we selected ten algorithms that were widely used or more novel, and generated a large number 
of data samples to test their frequency histograms. The experiment results verified this hypothesis, 
and further proved the correctness of the unification and simplification for position updating 
formulas. 

Introduction 

Particle swarm optimization (PSO), first introduced by Kennedy and Eberhart[1] , has been a 
popular research area in artificial intelligence technology, which has been used to solve a range of 
optimization problems. In PSO, the two issues of theoretical analysis and premature convergence 
have been the focus of attention. However, due to complex dynamics in particle swarm, the former 
has been conducted only in simplified systems, for example, not considering the random number in 
the position updating formulas[2] , and keeping the previous best position unchanged[3] . And the latter 
has been dealt with only by introducing some additional operations, for example, modifying the 
coefficients’ values[4] , changing the communication topologies[5] , and combining genetic 
operators[6] , which inevitably increases the complexity of PSO and makes the theoretical analysis 
more difficult. 

In order to handle the above problems, reference [7]  proposes a unified and simplified formula for 
position updating in the existing PSO algorithms. That formula simplifies the multiple-order 
stochastic difference equation to a first-order stochastic difference equation, reduces the multiple 
parameters to only one parameter, and makes it is easier to analyze the convergence and to control the 
search behavior of particles. However, in this reference, the process of unification and simplification 
depends heavily on the hypothesis of that new positions of particles are centered on their weighted 
experience. In this paper, we will verify this hypothesis, which further proves the correctness of the 
unification and simplification for position updating formulas. 

The rest of this paper is organized as follows. Section 2 describes standard PSO and introduces the 
unified and simplified position updating formula. This is followed in Section 3 by the methodology to 
verify the hypothesis. Section 4 is about experimental configuration, results and discussions. 
Conclusions are given in Section 5. 
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Standard Particle Swarm Optimization and a Unified and Simplified Position Updating 
Formula 

To build a baseline for performance testing of improvements to PSO, in Proceedings of the 2007 
IEEE Swarm Intelligence Symposium, D. Bratton and J. Kennedy[8]  defined the constriction PSO[9]  
as the standard PSO (abbreviated as SPSO-SIS). In SPSO-SIS, a particle’s position updating formula 
is often described as the following Eq. 1. 

   1 1 2 2( ) ( 1) * ( -1) * * ( 1) * * ( 1)i nX t X t V t C rand P X t C rand P X t          (1)  

In this notation, V and X are the velocity and position of the current particle; Pi and Pn are the 
previous best positions of the current particle and of the current particle’s neighborhood;  , C1 and 
C2 are called a inertia weight, a confidence parameter and a social parameter, respectively; rand1 and 
rand2 are independent uniform random numbers; t is the generation number. 

So far, there have been hundreds of modified PSO. Reference [7]  unified most of these PSO’s 
position updating formulas into the following formula: 

( ) * ( ) *j k k
j k

X t a X t j b P    , (2) 

where X(t) and X(t-j) are the current particle’s positions in the t-th and the (t-j)-th generation, Pk are is 
the k-th particle’s previous best position, and aj and bk are the coefficients. The following equation 

1
j k

j k

a b      (3) 

was proven in reference [7] . Bringing Eq. 3 into Eq. 2, it is gotten that 
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Based on the hypothesis of that  * ( )j
j

a X t j Q   is a rand number with a zero mean, reference [7]  

concluded that the unified and simplified formula for position updating is 

 ( ) 0X t Q rand  , (6) 

where rand(0) denotes a rand number with a zero mean. 

Methodology to Verify the Hypothesis 

This paper will verify the hypothesis mentioned above, i.e.  
 * ( ) = (0)j

j

a X t j Q rand  . (7) 

In order to fully verify it，this paper will cover all categories of PSO algorithms, and as same as in 
reference [7] , the following 10 widely used or more novel algorithms are chosen:(1)Standard PSO 
from IEEE Swarm Intelligence Symposium: SPSO-SIS[8] ；(2)Standard PSO 2007 in Particle Swarm 
Central: SPSO-2007[10] ；(3)Cooperative PSO: CPSO[11] ；(4)PSO with general fitness evaluation 
strategy: PSO-GFES[12] ；(5)Fully informed particle swarm: FIPS[13] ；6)Comprehensive learning 
PSO: CLPSO[14] ； (7)Orthogonal learning PSO: OLPSO[15] ； (8)Multi-layer particle swarm 
optimization: MLPSO[16] ；(9)Bare bones PSO: BBPSO[17] ；(10)Quantum-behaved particle swarm 
optimization: QPSO[18,19]。 

In term of the above mentioned algorithms, Eq. 7 can be specified as following, where all symbols 
denote the same as those in the above section. 

In algorithms (1)-(4), the specific hypotheses are 
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In algorithm (5), the specific hypothesis is 
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, N is the number of the current particle’s neighbors, and it is met 

that 
1
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k k
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  where kW  is a weighed coefficient. 

In algorithms (6) and (7), the specific hypotheses are 

 ( 1) * ( 1) * * ( 1) - (0)X t V t C rand P X t P rand       , (10) 

wherein, C is a coefficient. P is determined by means of selecting the best among neighbors in 
CLPSO, and by means of orthogonal experimental design in OLPSO. 

In algorithm (8), the specific hypothesis is 
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wherein m is the number of layers, Nj represents the number of the neighbors at layer j, Pjk is the k-th 

neighbor at layer j, and it is met 1
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In algorithm (9), the specific hypothesis is 
0 (0)rand . (12) 

It is seen that this hypothesis is always met, by the reason that the zero is a special rand number 
whose mean and standard deviation are both zeros.  

In algorithm (10), the specific hypothesis is 
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 (13) 

wherein * (1 )*i gL P P    , g represents the index of the best-performing particle in the whole 

swarm, Pg is the previous best position obtained by the whole swarm;   is a contraction-expansion 

coefficient; 
1

1 N

j
j

M P
N 

  , Pj denotes the j-th particle’s previous best position;  , k and u are 

independent uniform random numbers in the range of [0, 1]. 
To verify the above hypotheses of Eq. 8-11, and Eq. 13, the experiments in the following section 

will be conducted in corresponding algorithms for generating a large amount of data samples to test 
their frequency histograms. 
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Experiments 

Test Functions and Algorithms Configuration 
Ten benchmark functions are used for experiments because of their popularity in the PSO 

community. The names and formulas of these functions, the global optimum x*, the corresponding 
fitness value f(x*), and the feasible bounds [xmin, xmax] are given in Table 1, where D denotes the 
number of dimensions and is set to 30.  

Table 1 Benchmark Functions in the Experiments 

Function x* f(x*) 
Feasible 
Bounds 
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Range 
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f7, f8, f9 and f10 (rotated multimodal): 
f7, f8 and f9 are f3, f4 and f5 under coordinate rotation using Salomon’s algorithm [20] , 

respectively; f10 is f6 rotated by the methods in reference [14] . 
 
All these algorithms are configured as same as the corresponding references, except that the 

following configuration need to be clarified: 
(1) The number of particles is set to 50 in FIPS, according to reference [8] . 
(2) The velocity is clamped into the range of [-(xmax-xmin)/2, (xmax-xmin)/2] in MLSPSO and QPSO. 
(3) In SPSO-SIS, PSO-GFES, FIPS, CLPSO, OLPSO, MLPSO and QPSO, the position in each 

dimension is computed iteratively unless the position in the dimension is located inside the 
feasible search space. 

(4) In OLPSO and QPSO, those parameters decrease with the fitness evaluation number instead 
of with the generation number, by the reason that the generation number cannot be preseted 
due to position boundary conditions. 

(5) The best performed algorithms in references, i.e.  CPSO-H in reference [11] , PSO-P5 in 
reference [12] , FIPS with U-Ring topology in reference [13] , OPLSO-L in reference [15] , 
and MLPSO-6L in reference [16] , are selected in this paper. 

(6) In QPSO, the value of contraction-expansion coefficient decreases linearly, according to 
reference [19] . 

(7) The termination condition is set to 300,000 fitness evaluations, according to reference [8] . 
Experimental Results and Discussion 

Each algorithm runs 30 times independently. Fig.1(a)-(d) are frequency histograms that count 
times when each dimension of left side of Eq. 10 is located in per interval of (xmax -xmin)/101 after each 
generation in the first 1,000 fitness evaluations, the first 5,000 fitness evaluations, the first 20,000 
fitness evaluations and all 300,000 fitness evaluations, respectively. In order to facilitate the display, 
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the statistic results in Fig.1 come from all particles in all algorithms and from all benchmark 
functions.  

The following phenomena can be seen in Fig.1: 
(1) In the whole process of evolution, all samples are centered at zeros and distributed 

symmetrically. This verifies that  * ( )j
j

a X t j Q   is a rand number with a zero mean. 

(2)From Fig.1 (a) to (d), sample distribution is different, and become more and more gathered 
toward zeros, with the evolutionary process. This is because that particle swarm tends to explore in 
the early stage of evolutionary process, and that in the later stage, particle swarm becomes to 
converge and tends to exploit.  
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(a) In the first 1,000 fitness evaluations (b) In the first 5,000 fitness evaluations 
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(c) In the first 20,000 fitness evaluations (d) In the all 300,000 fitness evaluations 

Fig. 1. Frequency Histograms of  * ( )j
j

a X t j Q   

Conclusion 

In this paper, we represented further investigation on the unification and simplification for 
position updating formulas[7]  in particle swarm optimization. Aiming at the hypothesis of that new 
positions of particles are centered on their weighted experience, we selected ten algorithms that are 
widely used or more novel, and the results of experiments showed the correctness of this hypothesis. 
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