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Abstract. Soft set theory, proposed by Molodtsov, has been regarded as an effective mathematical 
tool for dealing with uncertainties. This paper is devoted to the study of uncertainty measures of 
soft sets in the framework of granular computing. The similarity relation induced by a soft set is 
proposed and the related fuzzy granular structure is constructed. The notions of information 
granularity and information entropy of a soft set are introduced. Some formulas are presented to 
calculate them. 

Introduction 
In 1999, Molodtsov [11] introduced the concept of soft sets, which can be seen as a new 

mathematical tool for dealing with uncertainties. In practice, a complicated object is usually 
described from different aspects. Soft set theory is closely related to fuzzy set theory and rough set 
theory [1,11]. Maji et al. [21] initiated the study on hybrid structures involving soft sets and fuzzy 
sets. Afterwards, many researchers have worked on this concept.Various kinds of extended fuzzy 
soft sets such as generalized fuzzy soft sets [27], intuitionistic fuzzy soft sets [22,25], and vague 
soft sets [4] were presented.  

The study of uncertainty measures is an important topic for the theories to deal with uncertainty. 
Majumdar and Samanta [26,28] initiated the study of uncertainty measures of soft sets and fuzzy 
soft sets. Jiang [9] proposed some distance measures between intuitionistic fuzzy soft sets, and 
constructed some entropies on intuitionistic fuzzy soft sets and interval-valued fuzzy soft sets. 
Wang and Qu [3] introduced axiomatic definitions of entropy, similarity measure and distance 
measure for vague soft sets, and some formulas have also been put forward to calculate them. Based 
on fuzzy implication operators and fuzzy equivalences, Qin et al. [23] proposed a new category of 
inclusion measures and similarity measures for fuzzy soft sets. Liu et al. [20] proposed some 
entropies for fuzzy soft sets. We notice that the entropies presented in [3,9,20] are based on the 
entropies for fuzzy sets. If the fuzzy soft sets (resp. intuitionistic fuzzy soft sets, vague soft sets) 
degenerate to soft sets, the entropies will be zero (take minimum value). Thus the uncertainty 
degree of soft set cannot be described.  

Granular computing (GrC) plays a fundamental role in fuzzy information processing. 
Information granularity and information entropy are two main approaches to measuring the 
uncertainty of a granular structure. The granular structures induced by equivalence relation, 
tolerance relation and fuzzy relation have been extensively studied in the framework of GrC [5–
7,13–19,24,30]. This paper initiated a theoretical study on the information granularity of soft sets. 
The notions of information granularity and information entropy of a soft set are introduced to 
measure its uncertainty. Some formulas are proposed to calculate the information granularity and 
information entropy.  

Overview of fuzzy sets and soft sets 
The theory of fuzzy sets initiated by Zadeh [2] provides a framework for representing and 

processing vague concepts by allowing partial memberships. 
LetU be a nonempty set, called universe. A fuzzy setµ onU is defined by a membership function 
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: [0,1]Uµ → . For x U∈ , the membership value ( )xµ essentially specifies the degree to which x  
belongs to the fuzzy set µ . There are many different definitions for fuzzy set operations. With the 
min-max system proposed by Zadeh [2], fuzzy set intersection, union and complement are defined 
componentwise as follows: 
   ( )( ) ( ) ( )v x x v xµ µ∩ = ∧ , 

   ( )( ) ( ) ( )v x x v xµ µ∪ = ∨ , 

   ( ) 1 ( )c x xµ µ= − , 
where ,vµ are fuzzy sets on U and x U∈ . µ  is called a fuzzy subset of v  if ( ) ( )x v xµ ≤ for 
any x U∈ .  

Let U  be the universe set and E  the set of all possible parameters under consideration with 
respect to U . Usually, parameters are attributes, characteristics, or properties of objects in U . 
( , )U E  will be called a soft space. Molodtsov defined the notion of a soft set in the following way: 

Definition 1 [11] A pair ( , )F A is called a soft set over U ,  where A E⊆ and F is a mapping 
given by      
    : ( )F A P U→                                                                      
(1) 

In other words, a soft set overU is a parameterized family of subsets of U . A  is called the 
parameter set of the soft set ( , )F A . For e A∈ , ( )F e may be considered as the set of e −
approximate elements of ( , )F A . 

Definition 2 [29] (1) A soft set ( , )F A overU is said to be a null soft set and denoted by A∅  if 
( )F e =∅  for each e A∈ ;   
(2) A soft set ( , )F A  overU is said to be a absolute soft set and denoted by AU  if ( )F e U=  

for each e A∈ . 

Fuzzy information granularity  
By using a fuzzy binary relation, objects are granulated into a set of fuzzy information granules 

[5,7], and a fuzzy granular structure is formed. Formally, let R  be a fuzzy similarity relation on 
the universe 1 2{ , , , }nU x x x=  . R  induces a fuzzy granular structure:  

1 2( ) ( ( ), ( ), , ( ))r R R R nG R N x N x N x=                                              (2) 

where ( )R iN x is the fuzzy similarity class of ix  and defined by ( )( ) ( , )R i j i jN x x R x x= for every 
,i jx x U∈ . We note that ( )R iN x is a fuzzy set on U . In what follows, we denote by ( )K U  the set 

of all fuzzy granular structures on U . 
To date, several forms of information granularity have been proposed according to various views 

and targets [12-14,17,24,30]. Among these studies, the partial order relation between granular 
structures plays a key role in characterizing the monotonicity of information granularity. 
Specifically, three kinds of partial order relations were mainly considered. 

Definition9 [24] Let , ( )P Q K U∈  where 1 2( ( ), ( ), , ( ))P P P nP S x S x S x=  , 

1 2( ( ), ( ), , ( ))Q Q Q nQ S x S x S x=  . 
(1) The binary relation 1  on ( )K U  is defined as: 1P Q  if ( ) ( )P i P iS x Q x⊆ for each ix U∈ . 
(2) The binary relation 2  on ( )K U  is defined as: 2P Q  if | ( ) | | ( ) |P i P iS x Q x≤ for each 

ix U∈ . 
(3) The binary relation   on ( )K U  is defined as: P Q if there exists a bijection :U Uλ →  

such that | ( ) | | ( ( )) |P i Q iS x S xλ≤  for every i n≤ . 
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Where 
1

| ( ) | ( )( )
n

P i P i j
j

S x S x x
=

=∑  is the cardinality of ( )P iS x . Clearly, the partial order relation 1  

and 2  are special cases of  . That is to say,  if 1P Q  (or 2P Q ), then P Q . P  and Q are 
called equivalent and denoted by P Q≈ if there exists a bijection :U Uλ → such that 
| ( ) | | ( ( )) |P i Q iS x S xλ≤  for every i n≤ . By P Q  we mean P Q  and ( )P Q¬ ≈ . 

Definition 10 [24] Let ( )K U  be the collection of all fuzzy binary granular structures on U . If, 
for every ( )P K U∈ , there is a real number ( )G P  with the following properties: 

(1) ( ) 0G P ≥  (nonnegative); 
(2) For every , ( )P Q K U∈  if P Q≈ , then ( ) ( )G P G Q= (invariability); 
(3) For every , ( )P Q K U∈ , if P Q , then ( ) ( )G P G Q< (monotonicity); 
Then G  is called a fuzzy information granularity. 
Fuzzy information granularity has been extensively studied. Some formulas have been put 

forward from different point of views to calculate the information granularity [5,12,24]. 

The information granularity of a soft sets 
Let ( , )U E be a soft space and ( , )F Aℑ =  a soft set over U . From classification point of view, 

we think that every object can be classified by every parameter. Namely, ( )x F e∈  implies that x  
is classified to ( )F e and ( )x F e∉ implies that x is classified to ( )U F e− . In general, each 
classification approach of objects is based on a specific similarity relation on the universe. In what 
follows, we propose a similarity relation on the universe with respect to a soft set. 

Based on rough set theory, a soft set ( , )F Aℑ∈ can be thought as an information system, and 
hence induces an indiscernibility relation R on the universe. Formally, for every ,x y U∈ , 
( , )x y R∈  if and only if ( )( ) ( )( )F e x F e y= for every e A∈ , where ( )( ) 1F e x =  if ( )x F e∈ and 

( )( ) 0F e x = otherwise. That is to say, ( , )x y R∈  if and only if x  and y  are indiscernible with 
respect to every parameter e A∈  ( i.e., ( )x F e∈  and ( )y F e∈ , or ( )x F e∉  and ( )y F e∉ ). 

In practice, however, it seems that considering the proportion of parameters that x and y are 
indiscernible with respect to them may lead to a better utilization of soft set approach. Thus we 
introduce the similarity degree ( , )R x yℑ  of objects x  and y  with respect to ℑ  as follows: 

1( , ) |{ ;({ , } ( )) ({ , } ( ) )} |
| |

R x y e A x y F e x y F e
Aℑ = ⋅ ∈ ⊆ ∨ ∩ =∅                         (3)

 

Clearly, ( )R F U Uℑ ∈ ×  is a fuzzy relation on the universe U . The following theorem is trivial. 
Theorem 11 Let ( , )U E be a soft space and ( , )F Aℑ =  a soft set over U . Then 
(1) Rℑ  is reflexive, i.e., ( , ) 1R x xℑ =  for all x U∈ . 
(2) Rℑ is symmetric, i.e., ( , ) ( , )R x y R y xℑ ℑ= for all ,x y U∈ . 
(3) ( , ) 1R x yℑ =  if and only if ( , )x y R∈ . 
(4) ( , ) 0R x yℑ =  implies ( , )x y R∉ . 
Let 1 2{ , , , }nU x x x=  . The fuzzy granular structure ( )K ℑ  associated with ℑ  is the vector:  

1 2( ) ( ( ), ( ), ( ))nK N x N x N xℑ ℑ ℑℑ =                                             (4) 
where ( ) ( )(1 )iN x F U i nℑ ∈ ≤ ≤ is the fuzzy similarity class of ix and is defined by: 

   ( )( ) ( , )i j i jN x x R x xℑ ℑ=                                                      (5) 
for each jx U∈ . 
Based on [5,24], we propose the information granularity of a soft set. Let 1 : ( , ) [0,1]G S U E →  be 

defined as: for each ( , ) ( , )F A S U Eℑ = ∈ , 
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   1
1

| ( ) |1( )
n

i

i

N xG
n n

ℑ

=

ℑ = ∑                                                      (6) 

where 
1

| ( ) | ( )( )
n

i i j
j

N x N x xℑ ℑ
=

=∑  is the cardinality of ( )iN xℑ . 

Let ( , ) {( , ); : ( )}AS U E F A F A P U= → be the set of all soft sets over U with parameter set A . 
Theorem 12 1G  is an information granularity in the sense that: 
(1) For every ( , )AS U Eℑ∈ , 1( ) 0G ℑ ≥ . 
(2) For every , ( , )AS U Eδℑ ∈ , if ( ) ( )K K δℑ ≈ , then 1 1( ) ( )G G δℑ = . 
(3) For every , ( , )AS U Eδℑ ∈ , if ( ) ( )K K δℑ  , then 1 1( ) ( )G G δℑ < . 

Theorem 13 Let ( , )U E be a soft space and ( , )F Aℑ = a soft set on U . Then 

   1 2

2( ) 1 | ( ) || ( ) |
| | e A

G F e U F e
n A ∈

ℑ = − −∑                                           (7) 

Corollary 14 Let ( , )U E  be a soft space and ( , )F Aℑ =  a soft set on U . Then 
   (1) 1( ) 1G ℑ =  if and only if ( )F e =∅  or ( )F e U=  for every e A∈ . 

   (2) 1
1 ( ) 1
2

G≤ ℑ ≤ .  

Remark 15 (1) If a soft set ( , )F Aℑ =  satisfies ( )F e =∅  or ( )F e U= for every e A∈ , then 
any two objects are indiscernible with respect to every parameter. In this case, ℑ  does not contain 
any information for classification. By this corollary, the information granularity 1( )G ℑ is maximum. 
Consequently, 1( )AG ∅  and 1( )( 1)AG U =  take maximum information granularity. 

(2) If we hope to get a normal information granularity, we can define *
1( ) 2 ( ) 1G Gℑ = ℑ − . 

Clearly, we have *0 ( ) 1G≤ ℑ ≤  
Qian et al. [24] developed an axiomatic constraint with a partial order relation which is defined 

in terms of the size of each fuzzy information granule. Based on [24], we propose the following 
definition. 

Definition 16 Let ( , )U E  be a soft space and ( , )F Aℑ = a soft set on U . The information 
granularity 2 ( )G ℑ  of ℑ  is defined as 

   2 2
1

1 1( ) log
| ( ) |

n

i i

G
n N x= ℑ

ℑ = −∑                                                (8) 

Theorem 17 Let ( , )U E  be a soft space and ( , )F Aℑ = a deterministic soft set on U . Then 

   2 2
1 2( ) | ( ) | log ( | ( ) |)

| |e A
G F e n U F e

n A∈

ℑ = − −∑                                   (9) 

The information entropy of a soft sets  
Information granularity and information entropy are two main approaches to measuring the 

uncertainty of a granular structure. Shannon’s entropy of a equivalence granular structure is a 
measure of information uncertainty. It is defined by the probability of each equivalence information 
granule. It has been extended to dealing with tolerance granular structure and fuzzy granular 
structure [5,10,15,24]. Based on [24], we propose the information entropy of a soft set. 

Definition 18 Let ( , )U E be a soft space and ( , )F Aℑ =  a soft set on U . The information 
entropy 1( )E ℑ  of ℑ  is defined as 

    1
1

| ( ) |1( ) (1 )
n

i

i

N xE
n n

ℑ

=

ℑ = −∑                                               (10) 

Theorem 19 Let ( , )U E  be a soft space and ( , )F Aℑ =  a soft set on U . Then 
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    1 2

2( ) | ( ) | | ( ) |
| | e A

E F e U F e
n A ∈

ℑ = −∑                                        (11) 

Definition 20 Let ( , )U E  be a soft space and ( , )F Aℑ = a soft set on U . The information 
entropy 

2 ( )E ℑ  of ℑ  is defined as 

 2 2
1

| ( ) |1( ) log
n

i

i

N xE
n n

ℑ

=

ℑ = − ∑                                             (12) 

Theorem 21 Let ( , )U E  be a soft space and ( , )F Aℑ =  a deterministic soft set on U . Then 

    2 2 2
1 2( ) log | ( ) | log ( | ( ) |)

| |e A
E n F e n U F e

n A∈

ℑ = − − −∑                         (13) 

Corollary 22 Let ( , )U E  be a soft space and ( , )F Aℑ =  a soft set on U . Then 

   (1) 1 1( ) ( ) 1G Eℑ + ℑ = .  
   (2) 2 2 2( ) ( ) logG E nℑ + ℑ = .  

Conclusion 
This paper is devoted to the study of uncertainty measures of soft sets in the framework of 

granular computing. The similarity relation induced by a soft set is proposed and the related fuzzy 
granular structure is constructed. Based on the related works on fuzzy granular structures, the 
notions of information granularity and information entropy of a soft set are introduced and 
investigated.  
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