

A Framework for Security Policy Derivation
Fei Peng1, a, Tao Zhang2, b, Weiguang Xu3, c, Min Zhao4, d

1College of Command Information System, PLA University of Science and Technology, Nanjing,
210007, China

2College of Command Information System, PLA University of Science and Technology, Nanjing,
210007, China

3College of Command Information System, PLA University of Science and Technology, Nanjing,
210007, China

4College of Command Information System, PLA University of Science and Technology, Nanjing,
210007, China

aemail:maryfeimm@163.com, bemail:vigorxu@163.com

Keywords: Security Requirement; Ontology; Security policy; Operating System

Abstract. It is difficult for end users to configure security models in operation system without
technical knowledge, since security models are defined by experts who have security experience.
Indeed, there is no complete method to translate user security requirements into implementable
security policies. In order to answer this demand we present an ontology-based framework for
eliciting end users’ security requirements toward operation system, deriving security policies and
matching appropriate security models for them. In the framework, ontology is employed to
standardize knowledge representation, reuse security requirements, reason security policies and
describe the ability of security model.

Introduction
In the past two decades, operating system has faced a variety of security challenges. Security

issues are concerned by experts, and various kinds of security models are proposed, such as the
Bell-LaPadula security policy, Biba, Role-based access controls (RBAC), SELinux, etc. These
security models focus on diffident security issues and adapt to diffident security requirements (SR).
Most end users without security or technical knowledge have no idea about what these policies are
aimed for and how to use them. Even if they know how to use them, configuring the policies one by
one is time-consuming and easily leads to mistakes. Therefore, it is important to derive security
policies from SR which is considered in terms of the full system. However, there is no complete
method to translate users’ SR into implementation-level security policies (ISP) directly. This is
because researches on SR and security policies lack interaction. Researches on SR focus on eliciting,
expressing and analyzing requirement accurately, but pay less attention to how to implement it [1].
On the other side, researches on security policies also do not express in place of requirements, and
are complex and concrete. In this paper, we propose a framework for deriving of ISP from end
users’ SR and attempting to bridge the gap between SR and security policies. There are three main
challenges in enforcement: firstly, to help end user express their needs accurately. The second
challenge is to translate abstract SR with roles and abstract actions into ISP with instance and
operation. The third challenge is to choose diffident security models to satisfy these ISP.

We solve this challenge in this paper. The rest of paper is organized as follows. Related work on
security requirement modeling and implementation are introduced in section 2. The framework we
proposed is depicted in Section 3. Section 4 gives some conclusions and future work.

Related Work
There are previous works to elicit SR and derive ISP. The model for eliciting SR included KAOS

[2], I* [3], Threat Tree [4] and Abuse Case [5]. KAOS and I* are goal-oriented methodologies.

2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2016)

© 2016. The authors - Published by Atlantis Press 1899

They just express ‘what’, ‘how’, ‘why’, but do not express ‘who’. This leads to a lack of subject for
the elicited SR. Threat Tree relies deeply on the users’ security experience, that cause it is difficult
for most people to use. Abuse Case is more suitable to be used as a test tool than a high assurance
tool. As we said, security model is matched in the last phase of our work. For this we need a new
model to elicit SR with main elements like subject, object, action etc. The methods above are not so
appropriate for our research. Ontology is well known for a good way to express concept and
relation semantically. Some recent researchers consider using ontology for SR elicitation, like O.
Daramola [6] use a threat ontology to elicit SR, whose work focus on dealing with textual SR. A.
Souag [7] uses ontology to elicit and analyze the resulting SR model elicited by I*, but do not
consider the security implementation. Some researches try to translate SR into actual implementable
policy like B. Tsoumas [8] uses Nmap to scan network infrastructure asset as the ontology instance,
and use IE tools to extract SR from policy documents. Ontology in the research is act as a container
of security knowledge and instance. The main difference from our work is that they do not collect
SR from user and they deal with network SR.

A Frame for Security Policies Derivation
The main goal of the framework is to translate SR into ISP and match the security model which

is in line with ISP. To achieve the goal, we use the reverse engineering idea in our work. We
summarize the access control model and produce a unified model, Security Object Model (SOM),
which is used to elicit the SR. As shown in figure 1, the framework is divided into three phases. In
the first phase, we abstract some basic concepts and relations of access control model, and define
rules, and then organize them to establish SOM. After that we use ontology to describe it. Secondly,
the ontology-based SOM is used to elicit specified SR and translate them into ISP. Besides, conflict
detection for ISP is also completed in this phase. Thirdly, security models such as BLP, Biba,
RBAC, SELinux, are also described in the form of ontology. Then, matching appropriate security
model with the resulted security policies by an algorithm. In the following section, the framework is
introduced in detail.

SR
（whitelist）

abstract access
model

define
refinements rule

use ontology to
describe

SR
specification

SOM

ISPrefine resulted Security
policies

detect
conflict

elicit

Match
security
model

BLP RBAC SELinuxBiba

Fig.1. The proposed framework

Ontology-based Security Object Model
SOM is an abstraction of access control model. We describe SOM as a three-tuple: SOM= <Co,

In, Re, Ru >. Co is the set of concepts of access control model. Typical access control models are
always described as allow or not allow subject performing action on objects. According to the
analysis of access control model, we define Co as Co=<security attribute, subject, object, file,
directory, file system, file link, process, action>. In is a set of instances which includes integrity (I),

1900

availability (A), confidentiality (C), read, write, mount, unmount, etc. Re is the set of Relations
which are described as 1 2 1 2Re { | , o, }R R C C C C C Co= ⊆ × ∈ ∈ . For example, we define that

as_path object pathH ⊆ × indicates object may have path, action objectPerform ⊆ × indicates
action is performed on object, _Only allowpolicy subject Perform⊆ × indicates subject is only
allowed to perform action on object, Include dir file⊆ × indicates directory includes files,

sec _Attribute object urity attribute⊆ × indicates object has a security attribute,
ffectA action Attribute⊆ × indicates action affect security attribute of object,
nl _O y allow subject Attribute⊆ × indicates only allow subject affect the attribute security of

object. Ru is the set of rules, which are described as follows:
Security attribute refinement (rule1): We research the control requirements on the system calls in

SELinux and classify these security-related system calls by the affect taken on the different security
attributes of the different objects. For example, , ,read file C Affect< < >>∈ ,

, ,link file C Affect< < >>∈ , , ,mount filesystem C Affect< < >>∈ , , ,write dir I Affect< < >>∈ ,
, ,remove filelink A Affect< < >>∈ , etc. We use these relations to help refining the abstract SR with

security attribute of object affected by subject to ISP with actual operation performed on object by
subject.

Rule 1:
a , sec _ , , ,

, , , , , _
, , _

action sa urity attribute o object s subject
o sa Attribute a o sa Affect s o sa Only allow
a o Perform s a o Only allowpolicy

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
< >∈ ∧ < < >>∈ ∧ < < >>∈ →
< >∈ ∧ < < >>∈， (1)
Example:

, sec _ , , 1 ,
, , 1, , _

1
,

, , , _

read action C urity attribute file object p subject
file C Attribute read file p file C Only allow

p read file Only allo
C Affect

read file Perf wpoliorm cy

∈ ∈ ∈ ∀ ∈
< >∈ ∧ < < >>∈ ∧
<

< < >>∈
>∈

→
< ∈∧ < >>

Inherit from directory (rule 2): The rule indicates security attribute of directory will inherit on the
file included in it.

Rule 2:
, , , sec _ , ,

, , _ , , , _
f file d dir s subject sa urity attribute d sa Attribute
s d sa Only allow d f Include s f sa Only allow

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ < >∈ ∧
< < >>∈ ∧ < >∈ →< < >>∈ (2)
Example:
/ / / , / / , , sec _ ,

/ / ,
/ / , / / /

, / / , _
, / /

data semobile config file data semobile dir jd subject I urity attribute
data semobile I Attribute
data semobile data semobile config Include
jd data semobile I Only allow
jd data

∈ ∈ ∈ ∈
< >∈ ∧
< >∈ ∧
< < >>∈ →
< < / , _semobile config I Only allow>>∈

Object path complement (rule 3): every object must have a path.
Rule 3:

, , _o object pa path o pa Has path∀ ∈ ∃ ∈ →< >∈ (3)
Example:

1 , / / 1, / / _file object data config path file data config Has path∈ ∈ →< >∈
For the standard expression and reuse of SR, ontology is used to describe SOM and SR. Part of

our ontology is shown in figure 2.

1901

Object

Security
attribute Action

SubClassof

Only-allowed

SubClassof

File directory

Process

Path

Affect

SubClassof

Include

Include

Attribute

Generate_By

Has_path

Rename

delete

Is-a

Is-a

C

I

A

Is-a
Is-a

Is-a

Subject

Only_allowpolicy

SubClasso
fFile

system

SubClassof

File link

SubClassof

link

Perform

Fig.2. Part of SOM ontology

Security Requirements Elicitation and Refinement
For the sake of helping user to express SR more accurately and simply, we limit end users to

express SR in term of whitelist. The whitelist is a list of subjects which have privilege. It expresses
which subjects perform action to affect the security attribute of object is legitimate. For example,
end users want to protect the confidentiality of file f1 and provide the whitelist as only allowing
process p1 to affect the confidentiality of file f1. SR is elicited as follows:

sec _ , 1 , 1 ,
1, , _

1,
1

C urity attribute f object p subject f C
p f C Only all

At
o

t i ut
w

r b e∈ ∈ ∈ <
< >>∈

>∈
<

∧

We use rule1 to refine the specified SR to the ISP as follows:

1,
, , sec

1, _
_ , 1 , 1 ,

1, , 1,

1, ,
1, 1, _ ,

1,, 1

rea
p f C Only allow

d link action C urity attribute f object p subject
f C Attribute read f C Affect

f C Attribute link f C Af
p f read Only allowpo

fect
licy

p f

∈ ∈
< <

∈ ∈
< >∈ ∧ < < >>∈ ∧

< >∈ ∧ < < >

>>∈
→< < >>∈

<∈ ∧ <> 1, _
1, 1, _

C Only allow
p f link Only allowpolicy

>>∈
→< < >>∈
Rule3 is used to complete the path.

1 , / ... / 1 , 1, /... / 1 _f object f path f f Has path∈ ∃ ∈ < >∈
After the complementation and refinement, Conflict is detected. In our research, the conflict is

defined as when a subject is not in the whitelist performs action to affect the security attribute of
object.

Security Model Matching
Different security model focuses on different security attributes, for example BLP focuses on

confidentiality, Biba focuses on integrity, and SELinux can protect both integrity and
confidentiality. The granularity of different security model is also different. RBAC is coarser than
other security models with implementable policy. A matching algorithm would be designed to help
providing appropriate security models suggestion for user. Ontology in our research is implemented

1902

in OWL. And another algorithm would be proposed to help translate the security policy in OWL
into the security model language which can be configured in operating system directly.

Conclusion
In this paper, we present a framework for deriving security policy. To support a more accurate

expression, we use ontology to describe and refine SR. A key contribution of the approach is
providing a complete method to translate user SR into ISP which can be configured in operation
system directly. Some processes of approach in this paper are semi-automatic like establishing
ontology and eliciting SR. In the future, we want to advance it to an automatic process.

References

[1] Hadavi M, Hamishagi V, Sangchi H. Security Requirements Engineering; State of the Art and
Research Challenges, International MultiConference of Engineers and Computer Scientists, 2008.

[2] Lamsweerde A. Elaborating security requirements by construction of intentional anti-models,
26th International Conference on Software Engineering, 2004.

[3] Liu L, Yu E, Mylopoulos J. Security and privacy requirements analysis within a social setting,
11th IEEE International Requirements Engineering Conference, 2003.

[4] Amoroso E J. Fundamentals of Computer Security. Prentice Hall, 1994.

[5] McDermott J, Fox C. Using abuse case models for security requirements analysis, 15th
Computer Security Applications Conference. 1999.

[6] OLAWANDE, GUTTORM, THOMAS. Ontology-based support for security requirements
specification process. On the Move to Meaningful Internet Systems: OTM 2012 Workshops[C].
Rome: Springer, 2012.194–206.

[7] Souag A, Salinesi C, Wattiau I, Mouratidis H. Using security and domain ontologies for security
requirements analysis, Computer Software and Applications Conference Workshops, 2013.

[8] BILL, PANAGIOTIS, STELIOS, ET al. Security-by-ontology: A knowledge-centric approach.
Security and Privacy in Dynamic Environments[C]. Karlstad: Springer, 2006.99–110.

1903

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9201
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9201
http://link.springer.com/book/10.1007/978-3-642-33618-8
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6605718
http://link.springer.com/book/10.1007/0-387-33406-8

