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Abstract – The article proposes the modified Kriging method for 

synthesis of three-dimensional model of geoenvironmental 

parameters based on data of land and borehole seismic survey.  
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geophysical borehole studies.  

Irregular grid-based spatial data modeling is currently used 
in many spheres of activities. Indeed, in geophysics, 
geoenvironmental parameters (porosity, permeability, etc.) are 
modeled based on the results of geophysical borehole studies 
(GBS) by various methods [1]. In the general case, such 
modeling should resolve itself into solution to a problem of 
three-dimensional interpolation whose solution may be based 
on the known deterministic methods (linear interpolators, 
inverse square method, basis function methods, etc.) [2]. Such 
approach provides good results in the field of significant 
concentration of basic data (boreholes). However, in case of 
offset distance from boreholes of hundreds of meters, the 
accuracy of deterministic methods decreases to unacceptable 
values.  

Statistical methods of interpolation in this situation allow 
for enhancing the accuracy of prognostic predictions. The 
geostatistical modeling and, in particular, Kriging method 
based on the analysis of spatial distribution and correlation 
relationships of the known values of interpolated field are the 
most popular [3]. The disadvantages of Kriging method 
comprise the constraint of obligatory homogeneity and object 
stationarity and the hypothesis of unboundness of the domain 
for the values of interpolated filed which generate physically 
unreal results. In case of sparse grid of prestack data, Kriging 
models are extremely rough and hardly differ from the 
deterministic ones.  

To eliminate the latter disadvantage, this work proposes to 
modify Kriging method through the analysis of prognostic 
parameters and data of land seismic survey (2D or 3D common 
depth point seismic (CDPS)). Combined use of land and 
borehole seismic survey data is based on the fact that CDPS 
has significantly more detailed grid of observations and the 
changes of a seismic attribute indirectly contain information on 
the changes of a prognostic geoenvironmental parameter [4]. In 

this case, the statement of a geostatistical problem for the 
evaluation of spatial data may be changed as follows:  

 Let N boreholes are drilled at points  ( , )i i ip x y , 

forming the irregular grid. 

 In each borehole, the measurements of a prognostic 
parameter are performed and are presented as 
geophysical well logging (GWL) curve 

( )if t , 1,..,i N . Let us consider the obtained GWL 

curves a sample of prognostic parameter field 

( ) ( , , )i i if t F x y t . 

 In the study zone, land seismic survey is performed 
setting the seismic attribute traces for the set of points 
(amplitude, energy, frequency energy ratios, etc.).  

 Only in case of performing 3D CDPS, this set forms the 
regular grid. Therefore, we will further believe that the 
reconstructed parameter is defined only at a point with 

coordinates ( , )x y , for which a seismic attribute is 

known: ( , , )S x y t  

In accordance with Kriging equation, the desired 
interpolation is sought in the form of the best linear 

combination of the known ( )if t : 


1

ˆ ( , , ) ( , , ) ( )
N

i i

i

F x y t w x y t f t


  

where ( , , )iw x y t  is the weight function of i-th borehole. As 

shown in [3], unbiasedness of estimate (1) in fixed arguments 
,x y and t  is achieved upon condition 


1

( , , ) 1
N

i

i

w x y t


  

and selection of the weight functions is determined by 
minimization of error variance: 

 ˆ( , , ) ( , , ) minD F x y t F x y t  
 

 
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In Kriging, the hypothesis on homogeneity and stationarity  

( , , )F x y t is used in the wide sense (covariance function does 

not depend on coordinates, but only on a distance between the 
points and on time deviation) [5]. This hypothesis leads to task 
simplification and use of variograms instead of covariance 
functions. Modeling of variograms is performed mostly by 
linear methods. All mentioned does not allow Kriging method 
to fully take into account spatial changes of inhomogeneous 
geological environment.  

By discarding the idea of homogeneity and stationarity of 

the field ( , , )F x y t  one has to abandon the modeling of 

variograms and to replace it with the model based on the 

properties of the field ( , , )S x y t . If there is a statistical 

association between ( , , )S x y t and ( , , )F x y t i.e. changes of 

covariance properties of inhomogeneous and nonstationary 

field ( , , )S x y t carry information on the changes of covariance 

properties ( , , )F x y t , then unknown weight functions may be 

found from the equation of interpolation of seismic attribute: 


1

( , , ) ( , , ) ( )
N

i i

i

S x y t w x y t s t


  

where ( ) ( , , )i i is t S x y t  is a seismic attribute trace in i-th point 

of a borehole. Constraint of consistency (3) rearranges to the 
following form: 


1

( , , ) ( , , ) ( ) min
N

i i

i

D S x y t w x y t s t


 
  

 
  

Let us view the solution of assigned task at an arbitrary 

point in space 
0 0 0( , )p x y : 


0 0 0( , , ) ( )S x y t S t  

 0

0 0( ) ( , , )i iw t w x y t  

Considering that, at point 0p , estimate (4) is unbiased, 

i.e.
0

0

1

( ) ( ) ( ) 0
N

i i

i

M S t w t s t


 
  

 
 , the equation (5) can be 

rewritten in the following form:  

0

0

1

( ) ( ) ( )
N

i i

i

D S t w t s t


 
  

 
  

2

0

0

1

( ) ( ) ( )
N

i i

i

M S t w t s t


  
    

   
  

2 0

0 0

1

( ) 2 ( ) ( ) ( )
N

i i

i

M S t M S t w t s t


 
     

 
  

0 0

1 1

( ) ( ) ( ) ( )
N N

i i j j

i i

M w t s t w t s t
 

 
  

 
   

 2 0

0 0

1

( ) 2 ( ) ( ) ( )
N

i i

i

t w t M S t s t


    

0 0

1 1

( ) ( ) ( ) ( )
N N

i j i j

i j

w t w t M s t s t
 

     

2 0

0 0

1

( ) 2 ( ) ( )
N

i i

i

t w t C t


     

 0 0

1 1

( ) ( ) ( )
N N

i j ij

i j

w t w t C t
 

  

where 2

0 ( )t is mean value at point
0 0( , )x y ; 

 0 0 0( ) ( , ) ( ) ( )i i iC t C t t M S t s t   is covariance function of 

seismic attribute ( , , )S x y t at point 
0p and at point

ip ; 

 ( ) ( , ) ( ) ( )ij ij i ic t c t t M S t s t  is covariance function of 

seismic attribute ( , , )S x y t at points of i-th and j-th boreholes 

with coordinates ( , )i ix y  and ( , )j jx y , respectively.  

Now, after differentiating the equation (8) with respect to 

each desired weight function 0 ( )iw t ,we receive a system of 

linear equations of the form:  

 0 0( ) ( ) ( )C t W t C t   

where covariance matrix of seismic attribute at points of 

boreholes -

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

n

n

n n nn

c t c t c t

c t c t c t
C t

c t c t c t

 
 
 
 
 
 

; matrix of 

weight functions -

0

1

0

0 2

0

( )

( )
( )

( )N

w t

w t
W t

w t

 
 
 
 
  
 

; covariance matrix of 

seismic attribute at prognostic point 0p  and at points of 

boreholes -

01

02

0

0

( )

( )
( )

( )N

C t

C t
C t

C t

 
 
 
 
 
 

.  

Solution of this system will be the values of weight 

functions 0 ( )iw t where the fulfillment of the condition (5) is 

achieved. For convenience of further calculations, the left and 
the right parts of the system (9) are normalized to 

dimensionless form through division of each equation by ( )iic t , 

and, the equation is added for taking into account the condition 
(2) by the method of Lagrange multipliers:  

 0 0 0

1 2( ) ( ) ( ) 1Nw t w t w t     

As a result, the system will have the form 
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 0( ) ( ) ( )R t Q t R t   

where 

12 1

12 2

1 2

1 ( ) ( ) 1

( ) 1 ( ) 1

( )

( ) ( ) 1 1

1 1 1 0

n

n

n n

r t r t

r t r t

R t

r t r t

 
 
 
 
 
 
 
 

 is normalized 

covariance matrix of seismic attribute at borehole points; 

01

02

0

0

( )

( )

( )

( )

1

N

r t

r t

R t

r t

 
 
 
 
 
 
 
 

is normalized covariance matrix of seismic 

attribute at prognostic point 
0p  and at points of borehole; 

0

1

0

2

0

( )

( )

( )

( )

( )

N

w t

w t

Q t

w t

t

 
 
 
 
 
 
 
 

is the matrix of weight functions. 

For the fixed time point t, system (11) becomes a system of 
linear algebraic equations (SLAE) that, in case of 

nonsingularity of the ( )R t  , is solved by any of the known 

methods (matrix method, Gauss' method, iteration method, 
etc.). For the real geological environments, seismic traces carry 
information on vertical inhomogeneity of rocks and, in the 
general case, are nonstationary. For the analysis of similar 
processes, let us introduce the hypothesis of their local 
stationarity. With this supposition, the normalized covariance 
functions can be calculated through time averaging in running 
window.  

To eliminate the above-mentioned problem of unboundness 
of the domain for values of the interpolated field, let us 
introduce additional constraint for the values of the weight 
coefficients:   

 00 iw  1,i N  

It is clear that, in case of simultaneous satisfying the 
conditions (12) and (2), the values of the interpolated field will 
not exceed the limits defined by prestack data. However, due to 
the fact that the constraint (12) represents inequation, it is 
impossible to add it to the system (11). Therefore, the 
following algorithm is proposed for its implicit adherence:  

1. SLAE (11) is solved by any known method. 

2. If there are negative values among the elements Q , then 

the corresponding lines and columns in the matrices R , 
0R  and Q  are removed; after that, algorithm is invoked 

again from step 1.  

3. In case if all elements Q  are nonnegative, then obtained 

solution is accepted and the algorithm is discontinued.  

Due to the fat that the accuracy of model development 
directly depends on the quality of aprior CDPS and GBS data, 
the step of data acquisition and preparation is important. This 
process can be divided into several successive steps: 

1. Borehole GBS data acquisition. Due to inhomogeneity 
of geologic environment, each borehole is unique. The 
absence of one of boreholes can attenuate the model 
reliability. Due to this, it is important to initially acquire 
information on the maximum number of boreholes.  

2. CDPS data selection. It is necessary to identify which 
attribute possesses the covariance properties similar to 
the properties of the prognostic field. For this, selection 
of traces for various seismic attributes close to each 
borehole is performed; after that, covariance 
relationships between the traces and the GBS curves are 
determined. Among the seismic attributes, the one with 
covariance matrix close to the covariance matrix of the 
prognostic parameter is selected.  

3. Formation of a set of the linearly independent traces of 
seismic attribute. In cases of the closely-spaced 
boreholes or small variability of seismic attribute, the 
system (11) will have a singular matrix. This stage 
allows for avoiding it and for eliminating information 
excessive for the algorithm.  

Primary testing of the method was performed with math 
modeling MATLAB environment with satisfactory results 
providing a background for further method implementation by 
means of programming language C# in the form of software 
application. Testing of this program was done with real data 
from Tomsk region oil fields. Materials of 3D CDPS and GBS 
of six boreholes were used for modeling. Prognostic parameter 
was alpha-SP measured by the method of spontaneous potential 
logging of rocks. Covariance analysis showed that the attribute 
“amplitude” after special processing corresponded to this 
parameter the most (Figure 1).  

 

Figure 1. 3D CDPS data.  

 

Generated 3D model for distribution of the parameter of oil 
filed alpha-SP allows for the evaluation of sedimentary section 
in areal option (Figure 2 and 3). Based on this model, zones 
with increased reservoir properties and clayish reservoir-seal 
rocks (alpha-SP <0.3) are clearly identified (alpha-SP >0.4). 
This prediction of selected geological bodies plays an 
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important role in the field development as well as in solving the 
tasks for further exploration of the reservoir. The weight 
functions obtained in the process of the modeling represent 
valuable information and may be used for solving of 
subsequent tasks, for example, in performing seismic facies 
analysis, determination of formation productivity field, etc. 
(Figure 4).  

 

Figure 2. Model of alpha-SP parameter. 

 

 

 

 

Figure 3. Vertical section of three-dimensional model of 

alpha-SP (Crossline 125) and its color gradation. 

 

 

Figure 4. Horizontal section of the weight function for one of 

boreholes. 

 

The outlined new geostatistical method, though proposed 
for building the three-dimensional models for parameters of 
geological environments through integration of CDPS and 
GBS data, may be generalized for solving similar tasks in other 
spheres.  
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