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Abstract—Parameter calibration of hydrological model is one of 
the most important issues in the field of hydrology. Practice 
experience suggests that the traditional calibration of 
hydrological model with single objective cannot properly 
measure all of the behaviors of hydrological system. In order to 
successfully calibrate a hydrological model, multiple criteria 
should be considered. In this study, an multi-objective calibration 
routine of Muskingum model is developed using the Non-
dominated Sorting Genetic Algorithm II (NSGA-II). The 
performance of the multi-objective calibration procedure is 
authenticated by three cases involving single-peak, multi-peak, 
and non-smooth hydrographs. The results show that the multi-
objective calibration procedure is consistent and effective in 
estimating parameters of the Muskingum model. 

keywords-muskingum model; multi-objective optimization; 
nsga-ii; parameter estimation 

I. INTRODUCTION 
The Muskingum model is the most widely used and 

efficient method for flood routing in hydrologic engineering. 
Parameters estimation of Muskingum model is very 
significative in both exploitation and utilization of water 
resources and hydrological forecasting. There are a variety of 
techniques for estimating the parameters of the Muskingum 
model for flood routing, such as least squares method (LSM) 
[1], Hook-Jeeve (HJ) pattern search technique in combination 
with simple linear regression (LR) [2], nonlinear least-squares 
regression (NONLR) technique [3], genetic algorithm (GA) [4], 
harmony search (HS) algorithm [5], dual formulation method 
[6], Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique [7], 
approximate methods [8], chance-constrained optimization 
approach [9], particles warm optimization (PSO) algorithm 
[10], immune clonal selection algorithm (ICSA) [11], Nelder-
Mead Simplex (NMS) algorithm [12], parameter-setting-free 
technique interfaced with a harmony search (PSF-HS) 
algorithm [13], differential evolution (DE) algorithm [14], 
hybrid harmony search algorithm (HS-BFGS) [15], spreadsheet 
software [16], hybrid particle swarm optimization (HPSO)[17], 
new discretization methods [18], adaptive hybrid particle 
swarm optimization (AHPSO) [19]. 

In all of these method, the calibration procedure is based on 
a single performance metric or calibration criterion. The main 
objective of this study is to perform calibration of the 

Muskingum using multi-objective optimization technique. In 
this study, a multi-objective evolutionary algorithm known as 
Non-dominated Sorting Genetic Algorithm II (NSGA-II), has 
been used to develop an automatic calibration routine for 
Muskingum model. The performance of the multi-objective 
calibration procedure is authenticated by three cases involving 
single-peak, multi-peak, and non-smooth hydrographs. 

II. NONLINEAR MUSKINGUM MODEL 
The Muskingum models fall under the category of lumped 

flood routing methods that use the continuity equation 

t
t t

dS
I O

dt
= −                                              (1) 

Where tS , tI and tO are the simultaneous amounts of storage, 
inflow and outflow respectively at time t . If storage is linearly 
related to inflow and outflow, the linear form Muskingum 
model can be expressed as 

[ (1 ) ]t t tS K xI x O= + −                                (2) 

where K  is the storage-time constant; x  is the weighting 

factor. If the relationship between [ (1 ) ]t txI x O+ −  and tS  is 
nonlinear, use of the nonlinear Muskingum model is considered 
more appropriate. The nonlinear form of Muskingum model 
can be expressed as 

[ (1 ) ]m
t t tS K xI x O= + −                                (3) 

In which, m  is an exponent that define the nonlinear 
relationship between weighted flow and accumulated storage. 
To calibrate the parameters K , x  and m  of the nonlinear 
Muskingum model, the routing procedure can be made as 
following. 

By rearranging Eq. (3), the rate of outflow tO  can be 
achieved as 
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Combining Eq. (4) and Eq. (1), the state equation can be 
expressed as 
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The next accumulated storage can be obtained as 

1t t tS S S+ = + Δ                                              (6) 

The next outflow in Eq.(3) can be calculated as  
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The solution procedure for the nonlinear model of Eq. (3) 
includes the following steps: 

Step 1: Assume values for three model parameters K , x  
and m . 

Step 2: Calculate the storage tS using Eq. (3), where initial 

outflow is the same as initial inflow 0 0Q I= . 

Step 3: Calculate the time rate of change of storage volume 
using Eq. (5). 

Step 4: Estimate the next storage 1tS + using Eq. (6). 

Step 5: Calculate the next outflow 1tO + using Eq. (7). 

Step 6: Repeat Steps 3 to 5 for the following time intervals. 

III. MULTI-OBJECTIVE CALIBRATION USING NSGA-II 

A. Formulation of Multi-objective Calibration Problem 
In model calibration, the match of measured data to 

simulated values is one of the most important indicators of how 
well a model is calibrated. To calibrate a model with multiple 
variables included in the calibration, model parameters are 
adjusted so that satisfactory agreements between the 
measurements and simulations for all variables included in 
calibration are achieved simultaneously. Hence to calibrate a 
model is to solve a multi-objective optimization problem, 
which can be described mathematically as follows: 

{ }1 2Minimize ( ) ( ), ( ), , ( )
Subject to

Mf f f=

≤ ≤low up

x x x x
x x x

LF

         (8) 

where 1 2( , , )Nx x x=x L  is the parameter vector and N is 

the number of parameters to be calibrated; lowx and upx  
represent the sets of lower and upper bounds of parameters; 

( )xF  is the vector of objective functions, 1( )f x , 2 ( )f x , L , 
( )Mf x ; M is the total number of objective functions. 

B. Non-dominated Sorting Genetic Algorithm 
The Non-dominated sorting genetic algorithm (NSGA-II) is 

an outstanding multi-objective optimizer base on evolutionary 
computation which is a nature inspired computational 
intelligence technique. By evolving a population of solutions 
simultaneously, NSGA-II can obtain a required set of non-
dominated solutions in a single run, and thus provide the 
decision makers with more comprehensive information about 
the target multi-objective optimization problem. NSGA-II 
maintains a population of solutions with determined size and 
evolves the individuals in the population to enhance their 
quality. At each iteration of the evolutionary procedure, the 
individuals with lower non-dominate rank and less density 
level will be selected to survive and proliferate. During 
iterations, the qualities of the individuals in the population 
gradually improves. As a consequence, the best trade-offs are 
finally obtained. The workflow of NSGA-II can be described as 
follows. 

Step 1: Create a random parent population of size N. 

Step 2: Sort the population based on the non-domination. 

Step 3: Assign each solution a fitness (or rank) equal to its 
non-domination level (minimisation of fitness is assumed). 

Step 4: Use the usual binary tournament selection, 
recombination, and mutation operators to create a new 
offspring population of size N. 

Step 5: Combine the offspring and parent population to 
form extended population of size 2N. 

Step 6: Sort the extended population based on non-
domination. 

Step 7: Fill new population of size N with the individuals 
from the sorting fronts starting from the best. 

Step 8: Invoke the crowding comparison operator to ensure 
diversity if a front can only partially fill the next generation 
(this strategy is called ‘‘niching”). 

Step 9: Repeat the steps 2 to 8 until the stopping criterion is 
met. The stopping criterion may be a specified number of 
generations. 

IV. CALIBRATION CRITERIA 

A. Objective Function 
Some studies indicated that the success of a calibration 

process is highly dependent on the objective function chosen as 
a calibration criterion [20, 21]. The most commonly used 
calibration criterion is the sum of squared errors between 
observed and simulated model responses [21]. In order to 

166



obtain a successful calibration by using automatic optimization 
routines, it is necessary to formulate the calibration objectives. 
In this study, two objective function formulate as follow: 

1. Sum of the square of the deviations between the routed 
and observed outflows (SSQ) 

2

1 , ,
1

( ) ( )
N

obs t sim t
t

f O Oθ θ
=

⎡ ⎤= −⎣ ⎦∑
                        (9) 

2. Deviations of peak of routed and actual outflows (DPO) 

2 , ,
1

( ) ( )
L

peak peak
obs i sim i

i
f O Oθ θ

=

= −∑
                        (10) 

Where ,obs tO  and ,sim tO are the observed and routed outflow 
at time t , respectively. N  is the total number of time steps in 
the calibration period. θ  is the set of model parameters to be 

calibrated. ,
peak

obs iO  and ,
peak

sim iO  are the observed and routed 
maximum outflow at peak flow event no. i , respectively. L is 
the number of peak flow events. 

B. Performance Evaluation Criteria 
The performance of the multi-objective calibration method 

is evaluated by two goodness-of-fit measures, namely the root 
mean square error (RMSE) and the coefficient of efficiency 
(CE).  

The RMSE is expressed as 

( )2

, ,
1

1RMSE
N

obs t sim t
t

O O
N =

= −∑
                        (11) 

The coefficient of efficiency, which has been widely used 
to evaluate performances of hydrologic models, is used to 
measure the goodness-of-fit [21]. Nash and Sutcliffe (1970) 
defined the coefficient of efficiency as 
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∑
                               (12) 

where obsO is the average observed outflow. 

V. APPLICATION EXAMPLE 

A. Example 1: Single Peak Hydrograph 
This example uses the data set of Wison (1974). The data 

set is a typical single-peak flood hydrograph and extensively 
used to test various parameter estimation approaches. In this 

example, the Muskingum model is calibrated by NSGA-II 
algorithm based on two objectives, the SSQ and DPO. The 
Pareto front for the calibration of sum of the square of the 
deviations and peak deviations between the routed and 
observed outflows is shown in Figure 1. The figure illustrate 
significant trade-off between SSQ and DOP, i.e. a parameter 
set that gives good calibration of overall agreement results in 
bad calibration of peak flow, and vice versa. Thus, by moving 
from A1 to C1 along the Pareto front, a reduction of the 
deviations of peak of routed and actual outflows is obtained at 
the expense of an increase in the sum of the square of the 
deviations between the routed and observed outflows. The 
minimum SSQ of 36.77 (corresponding to RMSE=1.29, 
CE=1.00) at the solution of point A1 increases to 41.38 
(RMSE=1.37, CE=1.00) at the solution of point C1. At the 
same times, the DPO is reduced from 0.90 at the point of A1 
with minimum SSQ to 0 at the point of C1. 

The solutions along the Pareto front are equally optimal as 
far as the calibration routine is concerned; however, a decision 
maker can choose one specific solution based on the 
importance of the calibration criteria, i.e., it merely depends on 
the type of model application [21]. In practices, the trade-off 
solution, which make compromised between the two objectives, 
is shown as B1 in Figure 1. The resulting DPO value is 0.39 
showing significant improvement over DPO value obtained 
using default simulation from single-objective calibration under 
almost the same RMSE and CE. The values of performance 
criteria are presented in Table 1. Graphical comparison 
between observed and simulated outflow for the solutions are 
shown in Figure 2. As is shown in Figure 2, the plots depict 
that the routed outflow hydrograph, using the trade-off solution 
(Point B1) obtained from multi-objective calibration, is closer 
to the observed outflow hydrograph at peak flow than the 
simulated outflow hydrograph of the parameters estimated 
from single-objective calibration. 
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FIGURE I.  PARETO FRONTS FOR SINGLE-PEAKED OUTFLOW 

HYDROGRAPH 

TABLE I.  COMPARISON BETWEEN SINGLE-OBJECTIVE AND 
MULTI-OBJECTIVE FOR SINGLE-PEAKED OUTFLOW HYDROGRAPH 

Evaluation 
criteria 

Single-objective 
(SSQ) 

Multi-objective (SSQ +DPO) 

A1 B1 C1 
SSQ 36.77 36.77 38.22 41.38 

DPO 0.90 0.90 0.39 0 

RMSE 1.29 1.29 1.32 1.37 

CE 1.00 1.00 1.00 1.00 
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FIGURE II.  COMPARISON OF SINGLE-OBJECT AND MULTI-OBJECT 

SIMULATED OUTFLOW FOR SINGLE-PEAKED OUTFLOW 
HYDROGRAPH 

B. Example 2: Multi-Peak Hydrograph 
This example uses the data of Viessman and Lewis (2003) 

presented by Al-Humoud and Esen [8]. The data set is a multi-
peak flood hydrograph and have been used to test the 
performance of parameter estimation approaches for 
Muskingum model [22]. The Pareto front produced by the 
NSGA-II for multi-peak hydrograph is shown in Figure 3. It is 
clear from Figure 3 that a significant trade-off exists between 
the two objectives. A large reduction of the DPO with a large 
increase is observed when moving from A2 to C2 along the 
Pareto front. Table 2 presents the values of performance criteria 
for the solutions obtained from single-objective and multi-
objective calibration. As is shown in Table 2, The minimum 
SSQ of 73509.62 (corresponding to RMSE=55.34, CE=0.98) at 
the solution of point A2 increases to 82297.74 (RMSE=58.56, 
CE=0.98) at the solution of point C2. At the same times, the 
DPO is reduced from 48.84 at the point of A2 with minimum 
SSQ to 0 at the point of C2. The compromise solution (Point 
B2) resulting DPO value is 20.33 showing significant 
improvement over DPO value obtained using optimal 
simulation from single-objective calibration. The DPO value of 
the compromise solution (Point B2) is 20.33, showing 
significant improvement over DPO value obtained from the 
optimal solution of single-objective calibration. The simulated 
outflow hydrographs along with the observed inflow and 
outflow hydrographs are shown in Figure 4. It is clear that the 
peak flows of simulated outflow hydrograph obtained from the 
compromise solution (Point B2) are closer to the observed 
peaks flow than the optimal solution of the single-objective. 
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FIGURE III.  PARETO FRONTS FOR MULTI-PEAKED OUTFLOW 

HYDROGRAPH 

TABLE II.  COMPARISON BETWEEN SINGLE-OBJECTIVE AND 
MULTI-OBJECTIVE FOR MULTI-PEAKED OUTFLOW HYDROGRAPH 

Evaluation 
criteria 

Single-objective
(SSQ) 

Multi-objective (SSQ +DPO) 

A2 B2 C2 
SSQ 73509.61 73509.62 76575.10 82297.74 

DPO 48.82 48.84 20.33 0 

RMSE 55.34 55.34 56.49 58.56 

CE 0.98 0.98 0.98 0.98 
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FIGURE IV.  COMPARISON OF SINGLE-OBJECT AND MULTI-OBJECT 

SIMULATED OUTFLOW FOR MULTI-PEAKED OUTFLOW 
HYDROGRAPH 

C. Example 3: Non-Smooth Hydrograph 
This example uses the data of the River Wye stretch in the 

United Kingdom presented by Karahan et al [15]. Figure 5 
shows the Pareto front generated by the NSGA-II for non-
smooth hydrograph. It can be seen that a significant trade-off 
exists between the two objectives. The remarkably reduction of 
the DPO with a significant increase is observed when moving 
from A3 to C3 along the Pareto front. The minimum SSQ of 
37944.16 (corresponding to RMSE=33.41, CE=0.98) at the 
solution of point A3 increases to 56605.36 (RMSE=40.80, 
CE=0.97) at the solution of point C3. At the same times, the 
DPO is reduced from 97.82 at the point of A3 with minimum 
SSQ to 0 at the point of C3. The trade-off solution, which make 
compromised between the two objectives, is shown as B3 in 
Figure 5. Table 3 presents the values of performance criteria for 
the solutions obtained from single-objective and multi-
objective calibration. It is clear from Table 3 that the DPO 
value (43.68) of the compromise solution is reduced 55% 
compared with the optimal solution of single-objective 
calibration. Graphical comparison between observed and 
simulated outflow for the solutions are shown in Figure 6.  
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FIGURE V.  PARETO FRONTS FOR NON-SMOOTH OUTFLOW 

HYDROGRAPH 

TABLE III.  COMPARISON BETWEEN SINGLE-OBJECTIVE AND 
MULTI-OBJECTIVE FOR NON-SMOOTH OUTFLOW HYDROGRAPH 

Evaluation 
criteria 

Single-objective 
 (SSQ) 

Multi-objective (SSQ +DPO) 

A3 B3 C3 
SSQ 37944.15 37944.16 43807.86 56605.36 

DPO 97.84 97.82 43.68 0 

RMSE 33.41 33.41 35.90 40.80 

CE 0.98 0.98 0.97 0.97 
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FIGURE VI.  COMPARISON OF SINGLE OBJECT AND MULTI-OBJECT 

SIMULATED OUTFLOW FOR NON-SMOOTH OUTFLOW 
HYDROGRAPH 

VI. CONCLUSIONS 
Parameter calibration of Muskingum model based on a 

single objective is often inadequate to measure properly the 
simulation of all the important characteristics of flood routing. 
In this paper, an multi-objective automatic calibration approach 
for the nonlinear Muskingum has been developed using a 
multi-objective evolutionary algorithm knows as NSGA-II. The 
two calibration objectives have been consider in the calibration 
procedure of Muskingum model:(1) sum of the square of the 
deviations between the routed and observed outflows (SSQ), 
and (2) deviations of peak of routed and actual outflows (DPO). 
The three application examples demonstrated that significant 

trade-off between the two objectives exist, implying that no 
unique single solution is able to optimize all two objectives 
simultaneously. Instead, the solution to the calibration problem 
is given as a set of Pareto optimal solution. Thus, it allows the 
user to choose a particular solution based on the importance of 
the calibration criteria involved. The results of three examples 
clearly showed that the multi-objective automatic calibration 
approach is consistent and effective in estimating parameters of 
the nonlinear Muskingum model. 
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