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Abstract—In seismic exploration, seismic data is always 

irregular and incomplete which will influence the subsequent 

processing. Therefore, seismic reconstruction of missing traces is 

very necessary. The seismic data reconstruction method based on 

compressive sensing (CS) has been applied widely in recent years. 

Comparing to traditional seismic data gathering, CS can reduce 

the acquisition cost, and allows for making new seismic 

acquisition designs. The fast iterative threshold shrinkage 

algorithm (FISTA) based on Fourier transform is an effective 

method to construct seismic data. CS can make use of the sparse 

property of signal through the nonlinear to reconstruct perfectly. 

In this paper, we first introduce CS theory and FISTA method. 

Then we test the reconstruction method by numerical examples 

and real seismic data reconstruction. As shown in paper, the 

reconstruction method based on CS theory is efficient. 

Keywords—seismic data reconstruction; irregular and 
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I.  INTRODUCTION   

In the seismic data acquisition stage, the seismic data are 
usually irregular and incomplete which is due to limited 
acquisition conditions and complex exploration, such as 
buildings, rivers, cliff and other obstacles located on the land. 
And with the restriction of exploration budget, seismic data is 
hardly dense; in contrast, sparse sampling is very low-priced. 
Irregular sampling (Fig.1 e-f) and sparse sampling (Fig.1 c-d) 
both influence the signal. Sparse sampling will decrease the 
amplitude of signal frequency spectrum, irregular sampling 
will lead to create alias, which would affect following data 
processing and interpretation. Therefore, seismic data 
reconstruction is important.  

By now, the reconstruction methods of missing traces can 
be generally divided into three types: 1) Method based on math 
transform, such as Fourier transform and Curvelet transform; 2) 
Method based on convolution operator; 3) Method based on 
wave equation

[6][7-10]
. 

In recent years, David Donoho, Emmanuel Candes, 
Terence Tao, Romberg proposed Compressed Sensing (CS) 
theory

[2][5]
. CS indicates a sparse or compressible signal can be 

recovered from a small number of random linear measurements 

by solving a convex 1l  optimization problem, which has been 
used in seismic data reconstruction and survey design

[1][4]
. 

Comparing to Compressive Sensing (CS), traditional seismic 
data acquisition which is based on the Nyquist sampling rate 
needs high requirements of gathering and storage of seismic 
data.  

In general, seismic data are usually not sparse. Therefore, 
we need make use of Fourier transform to make seismic data 
transform from time-space domain to frequency-wavenumber 
domain in which the seismic data are sparse. 

Moreover, fast iterative shrinkage-thresholding algorithms 
based on the Fourier transform is widely applied for 
reconstructing irregularly sampled seismic data, due to its 
simplicity, practicability and significant global rate of 
convergence

[1]
.  

 

Fig. 1 The results of sampling and corresponding spectrum. a) Dense regular 

sampling; c) Sparse regular sampling; e) Dense irregular sampling; b), d) and 

f) are the frequency spectrum of a), b) and c), respectively 
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II. THEORY 

Actually, the seismic data reconstruction equation can be 

expressed as follows 

 d Au w ,                               (1) 

where 
md  represents the observed data which is sparse 

sampled, 
m nA represents sampling matrix, 

nu represents  the “true” seismic data to be estimated, 

w represents an unknown noise vector. Equation (1) is an ill-

posed equation due to n m , that is to say, its solution is not 

unique. 

A fundamental requirement is assuming that seismic data 

has a sparse representation in some known transform domain, 

such as Fourier domain and Curvelet domain. In Fourier 

domain, seismic data can be transformed to sparsity by: 

r Fu ,                                    (2) 

The operator F  is Fourier transformation basis or 

dictionary which make r Fu sparse. And
H IF F , I  

represents the unit matrix. As a result, equation (1) now can be 

reformulated as follows 

 d Mr w , 
HM AF ,                      (3) 

Then, we need the coherence between sampling matrix A  

and transformation dictionary F  is little. Therefore, the 

reconstructed seismic data u  can be obtained by follow 

equation (Candes et al., 2006; Donoho, 2006; Hennenfent and 

Herrmann, 2008; Liu, 2015): 

1
arg min rr r   , s.t.   

2
 Mr d ,          (4) 

Then, to simplify the problem, we introduce the 

Lagrangian multiplier  , equation (4) is equivalent to the 

following equation (Yuan and Wang, 2013) 

2

2 1

1
arg min

2
r   r Mr d r ,            (5) 

where   determines the weight of  two items. Actually,   is 

a changing variable which influences the final optimal 

solution.   

The fast iterative threshold shrinkage algorithm (FISTA) is 

used to solve equation (5).The constant algorithm flow is 

presented, as follows: 

Step 0. Take 0 11
1y tr  ; 

Step k. 1k   Compute (6) and (7) 
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III. EXAMPLES 

In this section, firstly, we use numerical model to test 
seismic data reconstruction method. Then we apply this 
method to reconstruction the field data which has no any 
processing. 

First, synthetic of single layer subsurface model is 
generated to test the reconstruction method. The short gather is 
shown in Fig 2, which is with 200 traces, 1000 sampling points, 
1 ms sampling interval and 8 m spatial sampling interval. 

 

Fig. 2 Velocity model and original complete data. a) Single layer velocity 

model; b) Original seismic record 

Fig 3a) and Fig 3c) show the incomplete with 19% and 
65% traces randomly removed, respectively. And Fig 3b) and 
Fig 3d) show the reconstruction result corresponding to Fig 3a) 
and Fig 3c), respectively. It can be see that the missing seismic 
data is recovered successfully when random 19% traces are 
removed. Even to the random sampling 65% missing traces, 
the reconstruction result is acceptable. 

Then, synthetic of Marmousi model is generated to test the 
reconstruction method. The short gather is shown in Fig 4, 
which is with 383 traces, 3001 sampling points, 1 ms sampling 
interval and 10 m spatial sampling interval. Fig 5a) and Fig 5c) 
show the incomplete with 19% and 65% traces randomly 
removed. And Fig 5b) and Fig 5d) show the reconstruction 
result corresponding to Fig 5a) and Fig 5c), respectively. It can 
be see that the missing seismic data is recovered successfully 
even to the complex model. 
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Fig. 3 Results of different sampling to single layer model. a) Random sampling 

19% missing traces; b) Reconstruction results corresponding to a); c) Random 

sampling 65% missing traces; b) Reconstruction results corresponding to d) 

 

Fig. 4 Velocity model and original complete data. a) Marmousi velocity model; 

b) Original seismic record 

For our second example, we apply real field data to test this 
reconstruction method. The observed data are with 180 traces, 
2000 sampling points, 1 ms sampling interval and 5 m spatial 
sampling interval. Fig 6a) shows the seismic record of any shot, 
we randomly removed 15% traces. Fig 6b) shows the 
reconstruction result, it can be see that, though the result is 
acceptable, there exist some artifacts. 

 

 

Fig. 5 Results of different sampling to Marmousi model. a) Random sampling 

19% missing traces; b) Reconstruction results corresponding to a); c) Random 
sampling 65% missing traces; b) Reconstruction results corresponding to d) 

 

Fig. 6. Field data reconstruction result. a) Original field data; b) Reconstructed 

data form data with 15% randomly missing data 
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IV. CONCLUSIONS 

In this paper, we have introduced a general seismic data 
reconstruction framework based on Compressed Sensing (CS) 
theory and Fourier transform, which is fast and efficient. We 
also find that sparsity assumption is necessary to make use of 
the theory of compressive sensing. 

Through numerical modeling test and field test, we can find 
that the reconstruction method is significant. The seismic data 
is complete and continuous, which will benefit the following 
processing. Next, we need further study the seismic data 
reconstruction for field data which is more complex than 
modeling data. 
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