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Abstract—A numerical approach for free surface boundary 

formulation is proposed for simulation of surface waves in 
porous media, based on the Biot poroelastic model. A set of free 
surface characteristic variables for incoming and outgoing wave 
fields are set by domain decomposition for solid and fluid velocity 
and stress equations to account for the discontinuity of variables 
along the interface. A numerical example of a pseudospectral 
approach using Fourier and Chebyshev methods to compute the 
spatial derivatives along the horizontal and vertical directions, 
respectively and a splitting algorithm time solver accounting for 
the stiffness of the differential equations is presented to show the 
computional efficiency of the proposed method. 
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I.  INTRODUCTION 

Because of the presence of fluids in near surface earth 
media, a single phase pure elastic model is insufficient in 
describing the corresponding seismic wave propagation 
phenomena. Wave motion in a more complex composite 
medium containing fluids of gas and/or liquid filling the pore 
space can be described in poroelastic model based on Biot’s 
theory[1]. In the theory, the characteristics of wave propagation 
can be used to infer fluid properties such as water distribution 
and permeability that are useful in many science and 
engineering fields. Similarly, numerical simulation of wave 
propagation in poroelastic media is therefore crucial and basic 
for near-surface studies using seismic waves. Many works on 
this subject including finite difference[2], finite element[3] and 
spectral element[4] approaches are progressed.  

Due to discontinuity of variables along the free surface 
interface, simulation of surface wave is more complex than 
body wave, especially for the spatial operator perpendicular to 
the interface. Previously, many methods are proposed for 
elastic media. For instance, the direct and simple vacuum 
formulism in which the boundary conditions are assumed to be 
implicitly fulfilled by the discontinuity of medium parameters 
on the nodes. For finite difference method, another popular 
method is the imaging method, where the stress variables are 
imaged as odd functions across an interface. Several explicit 
medium averaging approaches are also proposed for finite 
difference method, where a fictitious layer is always presented 
to simulate the traction-free effects on surface waves. For 
spectral element and finite element method, the free surface 

boundary is automated satisfied in integration formulation, 
however the complex effects of fluids through the free surface 
[5-6]make the modeling of surface waves along free surface 
interface of a poroelastic medium is more challenging than 
that for elastic media. 

In this study, we present a numerical algorithm that allows 
for the accurate simulation of surface wave propagation in 
porous media. The algorithm is based on an explicit treatment 
of interfaces. A decomposed domain is used for  the wavefield 
at the interface to describe an incoming and an outgoing field 
for the medium based on characteristic variables that are 
evaluated for free surface boundary conditions[7] and has the 
advantage that it accounts for variables that are discontinuous 
across interfaces and hence cannot be correctly approximated 
with a gradient[4]. The Chebyshev operator is used in the 
vertical direction for a denser sampling in the vicinity of the 
surface, which is necessary for accurate modeling of surface 
wave propagations[8]. The stiff part in the Biot poroelastic 
differential equations is splitted to solved analytically due to 
presence of a diffusive slow mode at low frequencies, and the 
regular part is solved by an explicit fourth-order Runge-Kutta 
algorithm in a splitting time integration method[9]. 

II. EQUATIONS FOR POROELASTICITY 

A. Constitutive Relations 

Based on Biot's poroelastic model[1], the stress and strain 
relation in a two dimensional plane strain problem can be 
written as 

 , , , , ,( ) ( )ij t i j j i ij u i i i iv v v Mq        ,         (1) 

, , ,t i i i ip Mv Mq   ,                     (2) 

where ij  is the solid stress, p is the pore fluid pressure; iv  and 

iq  are the solid particle velocity and fluid particle velocity 

relative to the frame, respectively; u  is the undrained first 

Lamé coefficient which equals to 22 / 3mK M   ;   is the 

shear modulus.   and M  are the Biot coefficients, which are 
defined as  
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B. Biot-Euler Equations 

, , ,ij j i t f i tv q    ,                       (5) 

where (1 )s f       , s  and f  are the densities of solid 

grains and pore fluid. 

C. Darcy-Euler Equations 

, , ,i f i t i t ip v mq bq   ,                   (6) 

where /fm C  , C  is the tortuosity, and b  is the Darcy 

coefficient, which can be written as /b    at seismic 
frequencies, where   denotes the viscosity of the pore fluid 
and   is the dynamic permeability of the porous medium. 

III. CHARACTERISTIC VARIABLES IN DECOMPOSED DOMAINS 

FOR BOUNDARY CONDITIONS 

The boundary conditions are implemented by using a 
explicit characteristic variables in decomposed domains[7][10]. 
This method has modeled free surface, internal interface and 
no-reflecting boundary conditions. The wave equations are 
written in decomposed domains into incoming and outgoing 
wave modes. For satisfying the boundary conditions of the 
variables, the incoming waves are constrained by the boundary 
conditions and the outgoing waves are determined by the full 
space solutions, whose idea is similar to the imaging approach 
in finite difference method. 

The characteristic variables for the solid and fluid in the 
porous medium can be written in characteristic vector. If we 
assume the interface is perpendicular to z axis in two 
dimension, which is also valid for the inclined cases, the 
regular propagation part of poroelastic differential equation 
can be rewritten by 

, , ,t x z  v Av Bv s ,                            (7) 

where [ , , , , , , , ]T
x z x z xx zz xzv v q q p   v , A and B are propagation 

matrixes in porous medium. s is the source term in the 
equation. And  
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uE  is the undrained P wave modulus, and 
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Fig. 1. The six characteristic variables for the three wave modes in the 
porous medium. The incoming variables (c2,4,6) are calculated in the 
decomposed domain by boundary conditions. 

 

The characteristic variable vector is given by [10], 

c = Lv ,                                    (11) 

where L is the matrix each row of which is eigenvector of 
the matrix B. Vector c can be drawn from wave equation as 

, ,t zc = Λc ,                                 (12) 

where the diagonal matrix Λ  is written by  

 -1Λ LBL ,                                 (13) 

The non-zero eigenvalues corresponds to three incoming 
and outgoing wave modes in the porous medium (Fig.1). The 
characteristic variable vector c can hence be obtained by the 
conbinations of eigenvectors in L and propagation variables in 
v. 

By decomposing c into incoming and outgoing wave fields 
on the defined interface grid contacts, the variables of c, a part 
calculated from regular part of wave equation (7), and a part 
calculated from whatever possible boundary conditions for 
porous medium[5], then present the wave propagation 
behaviors on the interface, which is desirable for surface wave 
phenomena. This approach can be applied to represent the any 
variable discontinuity across the interface for various grid 
definations[4]. 

IV. MODELING ALGORITHM 

We use pseudospectral method as an example, which is an 
efficient and accurate wave modeling technique[3]. In this 
approach, the spatial differential operators are implemented by 
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spectral technique incorporation of boundary condition set for 
characteristic variables and time integration. In the horizontal 
direction, the Fourier pseudospectral method is adopted since 
it is simple and efficient in terms of uniform interval of grids 
per wavelength. However, the Fourier method is not the only 
option for the domain decomposition with source and 
receivers closed to the free surface, for free surface can only 
be modeled by vacuum ‘zero-padding’ approach above the 
interface to circumvent the spurious reflection boundary, 
which is not optimal for surface wave modeling. An 
alternative method is to use the Chebyshev method to compute 
vertical directional spatial derivative in the wave equations[7]. 
The Chebyshev method is not periodic as the Fourier method 
and allows for the incorporation of the characteristic variable 
decomposition discussed in the last section, including free-
surface, internal interface and non-reflecting conditions at the 
bottom of the mesh. 

To improve the conventional Chebyshev method with two 
major disadvantages, we use a mapping transform for the 
vertical coordinate to stretch the mesh and increase the 
minimum grid interval, hence also increase the time step of the 
Runge–Kutta time integration algorithm, thus improving the 
time stable criterion from O (N2) to O (N)  and breaking the 
limitation of Gauss–Lobatto interpolation points at interface 
definition[7]. Furthermore, this transformation can be also used 
for spatial grid adaptation in the sense that the interpolation 
points can be redistributed and properly selected in regions 
with sharp velocity gradients, fine layering or complex 
interface geometries. 

The slow wave mode that shows diffusive property in the 
Biot poroelasticity makes the differential equation stiff, as the 
whole system possesses two severely different time scale 
behaviors. Therefore, a numerical solution of the Biot wave 
equation poses a serious stable problem. To overcome this 
problem, the differential equations are solved with the splitting 
algorithm introduced by Carcione & Quiroga-Goode[11]. The 
numerical solution of the regular, non-stiff part of the 
differential equations is obtained by using a normal fourth-
order Runge–Kutta method as a time-stepping algorithm. 
Meanwhile, the stiff part that corresponds to the diffusion 
phenomenon can be solved analytically as [11] 

* 1[exp( ) 1]n n
i i f s iv v dt q     ,    

* exp( ) n
i s iq dt q ,                              (15) 

where ( / )s c   , which is the slow wave eigenvalue in a 
viscous fluid system. These velocities are the input of the 
explicit time integration for the regular part. 

V. SIMULATION EXAMPLE 

We simulate the surface wave in a homogeneous half-
space by domain decomposition (DD) for the fully drained 
open pore condition[5]. The properties corresponds to a water 
saturated lightly consolidated sandstone are shown in TABLE 
I. The 30 Hz first derivate of a Gaussian wavelet with 0.05 s 
time shift is applied to generate the vertical stress disturbance 
in the poroelastic medium to simulate a hammer blow on the 
free surface. We tested the simulation of the proposed method 

compared with the generalized averaging (GA) approach [12], 
using a forth order grid dispersion related finite difference 
operator [13]. 

Fig.2 shows the seismograms at offset 80 m of the vertical 
component of solid particle velocities and pore fluid pressure 
for the body waves (left panels) and surface waves (right 
panels) by both the DD and GA approaches. The results show 
that both approaches have equivalent precision for both body 
and surface waves. Pseudospectral simulation may have 
higher precision. Fig.3 shows four snapshots at 0.12 s, of the 
vertical component of solid particle velocities and pore fluid 
pressure for the DD approaches. Fast P - P1 wave, S wave and 
P2 wave can be identified in the internal, and one type of 
Rayleigh - R1 wave can be identified near surface. Only 
compressional components can be observed in the panels of 
pore fluid pressure. 

TABLE I.  PHYSICAL PROPERTIES FOR A POROELASTIC MEDIUM  

Parameter   

Pore fluids  Water 

Bulk modulus of fluid (GPa) 
f

K  2.25 

Density of fluid (kg/m3) 
f

  1000 

Viscosity (10-3Ns/m2)   0 

Porous media  Lightly consolidated sand 

Bulk modulus of frame (GPa)
m

K  0.621 

Shear modulus of frame 
(GPa) 

  0.455 

Bulk modulus of solid (GPa) 
s

K  36 

Density of solid (kg/m3) 
s

  2650 

Porosity   0.3 

Intrinsic permeability (10-

13m2) 
  10 

 

VI. DISCUSSION AND CONCLUSIONS 

We apply domain decomposition to handle the boundary 
condition in order to simulate  the surface wave propagation in 
a porous medium. Numerical tests indicate that the surface 
wave can be simulated properly compared with staggered 
finite difference generalized averaging approach. This method 
is physically straightforward, and can be applied in various 
numerical methods as finite element, spectral element and 
several central finite difference (e.g. ADER) methods to 
represent any interface effect in the medium of wave 
propagation phenomenon. 
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Fig. 2. Seismograms of vertical component of solid particle velocities (upper 
panels) and pore fluid pressure (lower panels) for body waves (left panels) and 
the surface waves (right panels). 

 

Fig. 3. Snapshots at 0.12 s of the vertical component of solid particle 
velocities (a) and pore fluid pressure (b) obtained by DD. 
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