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Abstract—Straight-ray-based inversion technique to estimate 
attenuation rate from electromagnetic tomography in coal mine 
has been available to geophysicists for over twenty years. This 
method gives a good computational efficiency but not a satisfy 
resolution. On account of the increasing computational power, 
accurate forward modeling can be included in advanced 
inversion approaches such that the full-waveform content can be 
exploited. Conventional full-waveform inversion methods are 
referred to as deterministic and are based on the minimization of 
an error term between the forward responses and the observed 
waveforms at each trace location. It is commonly used to give a 
‘best estimate’ or ‘most likely’ case, regardless of the attendant 
uncertainties--which is the nature of most geophysical problems. 
Deterministic method is also easy to be trapped in a local 
minimum if there is not a good start model .To address this 
limitation, we present a probabilistic full-waveform inversion 
method in Bayesian formulation. In this formulation, solution to 
inverse problem is a probability density function refers to as 
posteriori distribution which describes all information available. 
Make use of Bayesian theorem combined with Markov-chain 
Monte-Carlo (MCMC) sampling, we can generate stochastic 
realizations from the posteriori distribution of model parameters. 
Bayesian-MCMC methods can incorporate any information that 
can be expressed in terms of probabilities and provide more 
precise model parameter even with an arbitrary initial model. In 
case study, we explore the performance of electromagnetic full-
waveform inversion with MCMC through a simple synthetic 
tomographic example in coal mine, dielectric permittivity values 
of a moisture anomaly in coal seam can be obtained with a good 
resolution. Results demonstrate the feasibility of our statistical 
inversion method. 
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I.  INTRODUCTION  

Safety production of coal mining operations could be 
greatly affected by geologic anomalies in coal seam. Since 
most of the geologic anomalies in coal seams effect the 
attenuation rate of electromagnetic signal that passes through 
them, the radio imaging method (RIM), using a signal in the 
kilohertz range, is capable of locating the zones of geologic 
anomalies in underground coal mines with the help of 
tomographic reconstruction programs. RIM is the most 
promising geophysical tool for identify and locate the geologic 
anomalies ahead of mining. Straight-ray-based inversion of 

amplitudes of RIM data provides estimates of the signal 
attenuation distribution in coal seam region. This tomographic 
images obtained by ray-theory are limited in resolution because 
of straight-ray approximation and relatively small part of 
waveform information being included in the inversion. 

To get a better indication of the anomaly in coal seam, 
waveform-type approaches should be considered. The first full-
waveform inversion method appeared in Tarantola’s pioneering 
papers[9], then it was widely used for seismic data but rarely for 
electromagnetic data. Ernst et al.[7] firstly developed a full-
waveform inversion scheme for crosshole GPR data. Using 
adjoint-gradient approach to minimize a misfit function 
between observed and modeled waveforms, sub-wavelength 
features can be resolved with few iteration times. This adjoint-
based method providing a unique inversion result is referred as 
deterministic inversion. Algorithm convergence of this method 
largely depends on a good initial model guess obtained by ray-
based program. The convergence process is a global 
optimization problem and therefore is always in risk of getting 
trapped in a local minimum.  

Cordua et al.[1] proposed a GPR crosshole full waveform 
inverse algorithm in Bayesian formulation to deal with the 
limitation above. In Bayesian framework, solution to inverse 
problem is described by a posteriori distribution provided by 
observed data and priori information. The posteriori 
realizations are solutions to the inverse problem that satisfies 
both the waveform data within their uncertainty and at the 
same time satisfies the priori information about the solution. 
Many different possible solutions are obtained by sample from 
the posteriori distribution, which indicate the uncertainty of the 
solutions. It is a probabilistic inversion method. 

In this paper, we will adopt the latter method and 
investigate the performance of this probabilistic full-waveform 
inversion with MCMC in RIM. 

II. METHODOLODY 

Consider that the coal seam can be described by a discrete 
set of model parameters m, and that a data set d, as 
measurements data. The model m describes some physical 
properties (i.e. dielectric permittivity, electrical conductivity) 
of the coal seam that influences the data observations. The 
forward relationship between the model parameters m and 
observations d is given as a finite-difference time-domain 
(FDTD) solution of Maxwell’s equations. The inverse problem 
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is to infer properties of m based on a set of observations d, and 
possibly some priori information about m. 

RIM tomography is a typical under-determined, ill-posed 
inversion problem due to the coverage of observation system. 
That is to say, solution of this problem is not unique. In a 
Bayesian probabilistic formulation, the solution to this kind of 
inverse problem can be given as a posteriori probability density 
over the model parameters[11]:   

( ) ( ) ( )M Mm k m L m                                         (1)  

Where k  is a normalization factor, always constant, 
( )M m  is the priori probability density function, and ( )L m  is 

the likelihood function. ( )M m  describes the probability that the 
model satisfies the priori information. The priori information is 

some expectation about the parameters of coal seam. ( )L m  is a 
probabilistic measure of how well the modeled parameter 

explains the observed data. Therefore, ( )M m , the combined 
states of information provided by the data and the priori 
information, describes the probability that a certain model is a 
solution to the inverse problem. But the FDTD forward relation 
used in electromagnetic full waveform inversion is highly 
nonlinear; hence the posteriori distribution cannot be obtained 
analytically. That is to say there is not a closed-form 
mathematical expression of the posteriori distribution can be 
found. The Markov-chain Monte-Carlo (MCMC) algorithm 
makes it possible to sample from the posteriori distribution as 
the solution to the non-linear inverse problem. In MCMC 
method, a Markov chain is constructed over the state space of 
model parameters in order to generate samples from a target 
distribution (posteriori). Proper transition probability for the 
Markov-chain is chosen according to detailed balance equation. 
Then, with enough times of iteration, the Markov-chain is 
guaranteed to equilibrate to the target distribution no matter 
what the starting state is. The extended Metropolis algorithm is 
one of MCMC approaches developed by Hansen et al.[6]. In this 
method, given an algorithm that can sample the priori 
distribution, the posteriori will be sampled as following: 

 The priori sampler proposes a sample as initial model 

currentm ,compute ( )currentL m ; 

 Perturb currentm ,propose a new model proposem ; 

 The proposals are stochastically accepted at each iteration 
with probability (Metropolis rule) 

( )
min 1,

( )
propose

accept
accept

L m
P

L m

 
   

 
                                 (2) 

 If the proposed model is accepted, current proposem m , otherwise, 

currentm  is reused. This iterative procedure is repeated until a 

desirable number of models have been accepted.   
In this procedure, the FFT Moving Average generator 

(FFTMA) [7]algorithm serve as the priori sampler, which is 

very efficient for generating unconditional realizations from a 
multivariate Gaussian model. which produces samples from a 
priori probability density defined by priori distribution- a 
bimodal Gaussian distribution discussed below (background 
and anomalies) . 

The likelihood function is defined below as a Gaussian 
distribution:  

1

1

1
( ) exp ( ( ) ) ( ( ) )
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k k T k k

obs D obs
k

L m c f m d C f m d


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        (3) 

where ( )kf m and 
k
obsd

 represent the simulated (through 

FDTD) and observed waveform traces related to the k th 
transmitter and receiver pairs. c  is a normalization factor, K  is 

the total trace numbers. DC  is the data covariance matrix. 

proposem
 is obtained by perturbing currentm  using 

geostatistical algorithms as following: 

A square subarea of currentm
, with side-length step 

(exploration step size), is randomly selected in every 
perturbation and set to be unknown, then the values of this 
unknown area are re-drawn from a conditional probability 
distribution over these parameters conditional to the rest of the 

model parameters, therefore a perturbed new model proposem
 is 

obtained. This procures are repeated multiple times in order to 
obtain a random walk in the space of model parameters. This 
sampling strategy was described in the paper by Hansen et al.[5]. 
And it was named sequential Gibbs sampling due to its 
similarity to Gibbs sampling[3]. Changing the number of 
parameters to be re-drawn in each step controls the step-length 
of the random walk. The size of step-length controls the 
exploration nature of the random walk. Larger step size leads to 
lower accept ratio (in equation 2). On the other hand, smaller 
step size gives a higher accept probability. But, accepted 
realizations of the Metropolis algorithm become statistically 
dependent with small step size. Hence, the size of the step-
length is automatically adapted according to the accept ratio. 
[1][6]Large step is used in the initial phase, and then gradually 
smaller and smaller step is used. At some point the step-size is 
fixed (see Fig.2 right).  This is a demand for the algorithm to 
work correctly in the sampling part. 

III. RESULT 

We test the methodology outlined above on a synthetic 
tomographic RIM full-waveform data set. Wavefield 
simulations of the RIM signals (i.e., the forward relation) are 
obtained using FDTD calculations of Maxwell’s equations in 
TE mode[3]. 

Fig. 1(left) shows a synthetic reference image that simulates 
a matrix of coal seam with embedded collapse column (refer as 
moisture anomaly). Electromagnetic signals in coal seam 
waveguide are sensitive to the dielectric permittivity and the 
electrical conductivity of the materials. In this study we only 

429



 

 

Fig. 3 Six statistically independent realizations from the a posteriori 
probability density of the full waveform inverse problem.. 

Fig. 4 Mean(left) and standard deviation(right) of realizations drawn 
from the a posteriori probability density of the solution to the full 
waveform inverse problem 

Fig. 1 left) synthetic reference model which mimic coal seam with 
embedded collapse column. Green sign show transmitter positions and 
red sign show receiver positions. Right) The initial guess model used as 
input for the inversion. 

Fig. 2 log likelihood curve and step length as a function of iteration 
number 

consider the influence of the dielectric permittivity, which is 
sensitive to moisture content. Dielectric permittivity of collapse 
column is often high compared to coal seam. Therefore, the 
dielectric permittivity of the collapse column is set to a relative 
dielectric permittivity of εr ≈80 and the coal seam is set toεr 
≈10. The electrical conductivity is set to a constant value of 0.1 
mS/m and is assumed known in the following discussion.   

For the priori information, a bimodel distribution with increased 
probability of values around 10 and 80 is defined according to the 
reference model. Realistic priori information in field experiments can 
be obtained by field observations and geological expert knowledge. 
Fig. 1 (right) is an unconditional sample of the priori obtained using 
FFTMA. 
 

A full waveform synthetic data set is calculated using the 
FDTD algorithm. Then, white noise is added to the synthetic 
data to simulate the observation waveforms. A Ricker wavelet 
with a central frequency of 1 MHz is used as source pulse. The 
source pulse is assumed known during the inversion. The 
transmitter and receiver positions are separated by 40 m and 10 
m respectively. (See Fig. 1). Data acquired with a transmitter-
receiver angle larger than 45 degrees from horizontal are 
omitted. This leads to a total of 116 data observations (i.e. 
recorded waveforms). 

Realizations accepted by the Metropolis rule constitute the 
Markov-chain. The chain has two periods: one is burn-in 
period and then is stationary period. The end of the burn-in 
period can be located where the log-likelihood curve flattens 
out. In this case, burn-in was reached after approximately 5000 
iterations. (see Fig.2 left) 

In the stationary period, the chain converges to the target 
distribution; a sample from this distribution is then the solution 
to the inverse problem, which means after the Markov-chain 
reached a stationary state, realizations accepted by the 
Metropolis rule are representative samples of the posteriori 
distribution. It is not a single model being obtained as a 
solution, but many different possible solutions. This tells us 

about the uncertainty of the solution. The more different the 
individual realizations (i.e., solutions from the sampler) are, the 
worse is the resolution. On the other hand, if all solutions look 
almost the same, it means that we have a good resolution. 
Fig.3 shows six accepted samples after burn-in period. Only a 
slight deviation between the individual samples is seen, which 
means that this inversion strategy gives a good resolution. 

Fig. 4 shows the a posteriori mean and standard deviation 
based on samples from the a posteriori probability density 
during the stationary period. From the posteriori standard 
deviation it shows that the overall structure of the model is 
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recovered (standard deviation close to or equal to zero) 
whereas the higher standard deviation along the edges between 
collapse column and coal seam. A comparison between the 
reference model (Fig. 1 left) and the mean of the samples (Fig. 
3 left) confirms that the full waveform inversion is able to 
recover collapse column structures well. Moreover, it should be 
noted that the algorithm is able to reach these results even 
though it is started in a model very different with the reference 

model (compare Fig. 1 right and left).   

IV. CONCLUSION 

We have demonstrated the potential of tomographic full 
waveform inversion together with MCMC sampling. It is a 
combination of geophysical inverse problems and geostatistics. 
This probabilistic methodology provides a means of evaluating 
the posteriori uncertainty, which is not provided using 
deterministic full waveform inversion. Moreover, the present 
approach is robust even with an arbitrarily initial guess of the 
solution. Finally, the challenge of this algorithm is reducing the 
computational expense of the Monte Carlo strategy. 
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