
 
 

A Fabric Defect Classification Based on Two-dimensional Sparse 
Representations and a Norm Optimization 

Yuanshao Hou1, a and Jiande Fan1, b 
1Zhengzhou University of Industrial Technology, Information Engineering, Zhengzhou, China, 451150 

a516063795@qq.com, b568498042@qq.com 

Keywords: Two-dimensional sparse; Fabric defects; Norm optimization; Classification 

Abstract. Sampling loss of the structural information of the image for the one-dimensional 

compression and bring about the loss of recognition accuracy, we propose the concept of 

two-dimensional compression samples. Using a set of sparse-based perception to get the sparse data on 

the raw data of the defect, fabric defect two-dimensional sparse. Finally, use of norm optimization 

method accurately decrypt the compressed data, the eigenvalues of different fabric defect classification. 

This approach solves the proliferation of data collection and the sensor waste greatly reduces the 

computational complexity, fabric defect classification, and thus to lay a theoretical foundation for 

machine vision to identify fabric defects. 

Introduction 

Fabric defect is not only affects the quality of cloth but also affects the prices of textiles. As cord fabric 

is a special kind of textile products, its production speed is fast, wide , surface texture is relatively 

complex, and has a great large of defect types. Therefore, how to made rapid detection under 

complicated background in cord fabric defect puts forward higher requirements on detection and 

recognition technology. With the continuous development of image acquisition technology, fabric 

image collection has been solved well.so, to find effective defect detection identification algorithms 

become a research focus. However, with the improvement of the data acquisition device and sensor 

data processing ability, increasing the resolution of the image. Image recognition has higher dimension 

of data to be processed, and the data dimension of ascension makes complete real-time image 

processing and recognition is becoming more and more difficult. In order to solve the problem of data 

dimension raise and improve the speed of image recognition, we need find an effective way to reduce 

the data redundancy and complete raw data dimension reduction. In addition, the dimension reduction 

of image process is not only to reduce the dimension of data but also must seize the image of the main 

information and ignore the secondary information, so it should also is a kind of effective means of 

feature extraction. In this paper, two-dimensional compression sampling method is proposed on the 

basis of the one-dimensional compression sampling. 

Two-dimensional Sparse Representation Theory 

The research of Image analysis indicates that image recognition based on machine vision can be 

summed up in two-step processes, the first step is extracting the feature and the second is classification 

process. So the fabric defect detection and recognition is essentially a kind of image feature extraction 

and then classification problems. And sparse representation based on norm optimization theory in 

recent years has brought us new ideas. If, according to the theory of vector under some kind of 

transformation is sparse (i.e., vector zero elements of the majority), then you can use this kind of sparse 

underdetermined random linear mapping of the vector, and don't have to worry about losing any 

information. As long as the mapping matrix satisfy certain conditions, we can use norm optimization 

technique by these" under sampling value" (sampling frequency is lower than the classic Nyquist 
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frequency) accurately reconstruct the original vector. 

So far, the traditional habit of the study of image feature extraction and classification algorithm is 

usually from the perspective of the vector (1d), and the processing method of one dimension does not 

take into account the image matrix structure, which usually leads to higher computational overhead and 

identification of instability. 

The Meaning of the Two-dimensional Sparse Representation. We always consider that the 

traditional one-dimensional feature representation and pattern classification directly used for image 

recognition will lead to the following drawbacks: (1) the two-dimensional structure of image 

information lost, and bring losses to the identification accuracy under the same conditions. (2) The 

traditional algorithm transform the data into vector form first, and this kind of "vectorization method 

will result in an increase in computational complexity in the process of sampling and reconstruction. 

For the above shortcomings, the use of image matrix structure (2d) can complete the expansion of the 

one-dimensional method to two-dimensional. Expanded form of 2d image representation and classifier 

to a great extent solving the shortcomings of the one-dimensional algorithm, and can drive the 

upgrading and transformation of one dimensional image recognition algorithm, then fabric defect 

detection and recognition could have a positive impact. 

One-dimensional Sampling to Two-dimensional Sparse Sampling. Before the introduction of 

two dimensional compression sampling, we first do a simple review for one-dimensional compression 

sampling concepts: It is assumed that x is an image which   is a    matrix, we transform matrix   

to vector           , so we can get the vector feature of one-dimensional image compress form by 

the Eq (1). 

)()( vecvec xy                                                                    (1) 

Which )( )()()( MNMR vecMNvecM  
 is underdetermined random matrix (Random distribution 

option Gaussian distribution) that meet the conditions of RIP. 

If we don’t vectoring x in our study, keeping NMRx   and making Eq (1) a little change, then we 

can get a two- dimension compress random projection Eq (2): 

cR xy                                                                      (2) 

Which 
Mm

R R  Nn
c R  ),( NnMm  are Line sampling matrix (row map) and sampling 

matrix column (column map). R  and C  are underdetermined random matrix  that Meet the 

conditions of RIP.what different with one-dimension compress sampling is y from Eq(2) is not a vector 

but a matrix )( NMRy  .we called matrix y two-dimension compress sampling mesure. 

It is assumed that 
)(i

R  is i-th ),...,1( mi  vector and 
)( j

c is j-th ),...,1( nj  vector in matrix R . 

It is not difficult to find that: 

)()(),( j

c

i

R

ji xy                                                                  (3) 

Eq (3) shows the matrix mapping of each element contains a row and column mapping part of 

extracting information from the matrix x. 

It can preliminarily prove oretically and experimentally, as long as it is piecewise smooth (can be 

sparse through a transformation), or x itself a sparse matrix, and the number of rows/columns of the 

matrix is greater than a certain threshold (but less than the number of row/column of x).The amount of 

information contained in y and as much as x has, so you can use the technology of convexification 

reconstruction from y to x. 

In practical application, if the acquisition image f itself is not sparse but on a  base of transform 

coefficient   is sparse or compressible, namely f . Then it is said image f can be compressed. 

167



 
 

Sparse representation theory not only can be used in the feature representation, but also can be used 

for the design of classifier. In image recognition, for example, assume that the input image can be 

expressed as linear and sample training set, and the linear training set’s coefficient vector is sparse, and 

by the position of the sparse vector of non-zero value can classify the input image. And the process is 

actually based on sparse vector norm optimization reconstruction process is based on l1 norm 

optimization reconstruction process [1, 2]. 

The Representation of Two-dimensional Sparse Training Set. Two-dimensional sparse 

representation of ideas can also be represented in figure 1: figure 1 dictionary A  is underdetermined 

matrix that constructed of the training set samples, and each column is the known ID mode vector, y is 

the input mode vector. When the sample is fully enough in the dictionaryA , y can be expressed as the 

linear of related patterns inA . The coefficient vector   shall be sparse, so the non-zero value in   

can locate the relevance vector included in A . we can determined that if the relevant samples belong to 

the first class on the basis of this classification, so if the relevance sample belongs to the i-th class ofA

then the image should be classified i-th class. Mathematically to the above ideas can also be for the 

following:  

iininiiiii Avvvy
ii

  ,,2,2,1,1, ...                                              (4) 

],...,,[ ,2,1, niiii uuuA   is i-th training sample set, 
T

niiii ],...,[ ,2,1,   is coefficients vectors Eq [3]. 

For all the training set of sample (totally k class), the above formula can also be written as the 

following form: 

 AAAAy T

kk  ],...,,][,...,,[ 2121                                               (5) 

],...,,[ 21 kAAAA  is total training set; 
T

k ],...,,[ 21   is coefficients vectors ; as  is related 

with iA only, so must be sparse vector and the location and size of sparse vector is Closely linked 

iA .we can confirm ID by sloving  . 

Because A is an underdetermined matrix, so Eq (5) has an infinite number of solutions. The above 

problem can be transformed to a convex optimization problem by sloving minimize l1 norm min , 

then got the sparse solution of   These ideas have been sums up by American mathematician D. 

Donoho ”for large systems of equations, the minimum l1norm solution is also the minimum l0 norm 

solution ”[3]. 

 

 

Figure 1.  Pattern recognition method based on sparse representation 

Two-dimensional Sparse Representation of the Constraint Condition. By shannon sampling 

theorem, the sampling frequency is not only less than the Nyquist frequency (the spectrum of analog 

signal) twice of the highest frequency can restore the original signal distortion. However, Shannon's 

sampling theorem, the signal is assumed in addition to using limited bandwidth, without the use of any 

other a priori information, the collected data is in large redundancy. 

Sparse representation of the two-dimensional data acquisition is not directly, but through a specific 

set of waveform data to perceive that, in order to accurately reconstruct the original data set we must be 
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used to sense particular waveform data, and make use of the original waveform to measure the specific 

degree of coherence of data, only when the degree of coherence in the acceptable range to optimize the 

method using norm accurate reconstruction of data; the key factors involved in that with a given 

waveform to the waveform can be used to compress the raw data are irrelevant and the higher the 

irrelevant is, the greater amount of information the awareness data contained, then get an accurate 

perception of the reconstruction, the less the amount of data required for the original data 
[4]

. 

Restricted equidistance principle, consistent with the uncertainty principle and the principle of 

accurate reconstruction principle those raised abroad principle further answered how to easily extract 

the signal or image or other useful information from the compressed data
 [5]

.  

Fig. 2 is a schematic diagram of the sampling process, where in the signal f to be collected only at 

time zero of k  (k  is the degree of sparse) and the k-th non-zero only in this time to effectively 

capture the signal f of the information, and projected onto a given set of sensing waveforms   (it can 

be said with a given waveform to perceived f ) to obtain a set of data is much smaller than the original 

length measurement data y  [6]. 

 

 

Figure 2.  Compressed sensing data collection methods 



  fyf
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m

最小化1],...,,[ 21                                                    (6) 

Coherence and Sparsity. u define the degree of coherence between the base and the base is: 

),(max),(max),(
,1,1

jkAu
njk

jk
njk 

                                                (7) 

Which k , j  are row and column vectors of orthogonal matrix、 ( jk, respectively rows and 

columns of the matrix). Through knowledge of linear algebra we can get ]1,/1[),( nu  . Therefore, 

when the measurement matrix is a unit matrix, the maximum degree of coherence of u is 1. In this case, 

only the amount of data collected and raw sensory data corresponding to the data to estimate the 

compressibility of the important information. Therefore, when the degree of coherence between the 

sensing matrix and the transformation matrix is 1, only can we using conventional sampling methods. 

In fact, the most matrixes are substantially incoherent, i.e. the degree of coherence is not 1. 

The minimum degree of coherence matrix norms is formed by the Fourier transform matrix and 

impulse Eq )( kk tt   .and the value is n/1 .he degree of coherence between the Pulse Eq

)( kk tt    and sine curve is also n/1 . 

Data Compressibility. The compressibility of data is that data can be expressed by fewer 

coefficients in case of little lost or out of a transform domain data in the field of support is relatively 

small, the data is compressible. Further, when the data in the spatial domain or the transform domain 

coefficients are belong to ball pl )10(  p , and the data is also compressible data [7]. 

In this case indicates that the transform coefficients data  of f determined by the given group

f , for any given constant R )0( R and P )10(  P  satisfy Eq (8) 
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When the coefficient  belongs to the ball pl , set up k is k larger items in  , and other items in 

the resulting vector is set to zero, then 

P

PPK K /12/1

,22
)1(                                                       (9) 

Which p,2  is constant only depend on )2,0(p . So in order to make the estimation error is not 

greater than  , only to satisfies ppk 2/)2(   , even the k coefficient keep the most important 

information of the data. 

Conclusion 

In the present study, we believe that norm optimization based on sparse representation and image 

recognition algorithms can also to be improved [8]. In sparse transform and image reconstruction 

process is often mixed with noise interference, how to maximize the removal does not affect the case of 

image reconstruction noise, and make use of the difference between structure of image and sparse 

matrix to reconstruction and classified fabric defect image [9]. But also need to be improved in the 

following areas: 

(1) In sparse representation, the low-rank representation and manifold structure is closely related 

to data sparsity, and if low rank representation means and the manifold structure are introduced to the 

sparse representation of the image will be expected to get better compression results [10]. 

(2) In the norm optimization, if we can combine the sparsity of the image itself and priori, then the 

classification of the reconstructed image will get better recovery results. 
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