A Sufficient and Necessary Condition for G-expectation to be Linear

Qixia Zhang^{1, a} and Qiliang Sun^{1, b*}

¹School of Mathematical Sciences, University of Jinan, Jinan 250022, China

^azhangqixia110@163.com, ^bsuntsiang@163.com

*The corresponding author

Keywords: Backward stochastic differential equations; Peng's g-expectation; Mathematical expectation; Lipschitz condition; Girsanov Theorem.

Abstract. In general, Peng's g-expectation is a nonlinear mathematical expectation. However, if the function g (t, x, y) satisfies some properties, the g-expectation is expected to be linear. For g-expectation, we have the following conclusions: The necessary and sufficient condition for g-expectation to have linear properties is that the function g has nothing to do with variable y, and g is linear with variable z. In this case, there exists a probability measure Q, under which the linear expectation is equivalent to Peng's g-expectation.

Introduction

The concept of expectation is clearly very important in probability theory. Expectation is usually defined via

$$E\xi = \int_{-\infty}^{+\infty} x dF(x), \tag{1}$$

Where $F(x) := P(\xi \le x)$ is the distribution of random variable ξ with respect to the probability measure *P*. One of the properties of mathematical expectation is its linearity: for given random variables ξ and η ,

$$E(\xi + \eta) = E\xi + E\eta. \tag{2}$$

This is equivalent to the additivity of probability measure, that is,

 $P(A+B) = P(A) + P(B), \quad \text{If } A \cap B = \Phi.$ (3)

From this viewpoint, we sometimes call mathematical expectation (resp. probability measure) linear mathematical expectation (resp. linear probability measure). It is well known that linear mathematical expectation is a powerful tool for dealing with stochastic phenomena. Economists have found that linear mathematical expectations result in the Allais paradox and the Ellsberg paradox, see Allais [1] and Ellsberg [2].

Peng [3, 4] introduced a kind of nonlinear expectation (he calls it the g-expectation) via a particular nonlinear backward stochastic differential equation (BSDE for short). Some applications of Peng's g-expectation in economics are considered in [5-9]. A question is the following: when is the sufficient and necessary condition for the g-expectation to be linear. We note that Peng's g-expectations can be defined only in a BSDE framework, therefore, we consider the function g.

BSDE and G-expectation

Let (Ω, F, P) be a probability space with filtration $(F_s)_{s\geq 0}$, and let $(W_s)_{s\geq 0}$ be a standard d-Brownian motion. For ease of exposition, we assume d = 1. The results of this paper can be easily extended to the case d > 1. Suppose that (F_s) is the σ -filtration generated by $(W_s)_{s\geq 0}$, that is $F_t = \sigma\{W_s, 0 \le s \le t\}$.

Let T > 0 $F_T = F$ and $g = g(y, z, t) : R \times R^d \times [0, T] \rightarrow R$ be a function satisfying

(H.1) $\forall (y,z) \in R \times R^d$, g(y,z,t) is continuous in t and $\int_0^T g^2(0,0,t) dt < \infty$;

(H.2) g is uniformly Lipschitz continuous in (y, z), that is, there exists a constant C > 0, such that $\forall y, y' \in R, z, z' \in R^d$, $|g(y, z, t) - g(y', z', t)| \le C(|y - y'| + |z - z'|)$; (H.3) $g(y, 0, t) \equiv 0, \forall (y, t) \in R \times [0, T]$.

Let M (0,*T*, R^n) be the set of all square integrable R^n -valued, F_t -adapted processes $\{v_t\}$ with

$$E\int_0^T v_t^2 dt < \infty.$$
(4)

For each $t \in [0,T]$, be $L^2(\Omega, F_t, P)$ the set of all F_t -measurable random variables. Pardoux and Peng [10] considered the following backward stochastic differential equation:

$$y_{t} = \xi + \int_{t}^{T} g(y_{s}, z_{s}, s) ds - \int_{t}^{T} z_{s} dW_{s}, 0 \le t \le T,$$
(5)

And showed the following result:

Lemma1. Suppose that *g* satisfies (H.1)–(H.3) and $\xi \in L^2(\Omega, F, P)$. Then Eq. 5 admits a unique solution $(y, z) \in M(0, T, R) \times M(0, T, R^d)$.

Using the solution of Eq. 5, Peng [3] introduced the concept of g-expectation via Eq. 5.

Definition1. Suppose g satisfies (H.1)–(H.3). Given $\xi \in L^2(\Omega, F, P)$, let (y, z) be the solution of Eq. 5. We denote Peng's g-expectation of ξ by $E_g(\xi)$ and define $E_g(\xi) := y_0$.

The g-expectation $E_{g}(\xi)$ preserves many of the properties of classical mathematical expectation. However, it does not preserve linearity. See, for example, Peng [3] for details.

Main Results

For the linearity of g-expectation $E_{\rho}(\xi)$ we have the following result.

Theorem 1 $\forall \xi, \eta \in L^2(\Omega, \mathbb{F}_T, P)$, then $\mathbb{E}_g(\xi + \eta) = \mathbb{E}_g(\xi) + \mathbb{E}_g(\eta)$ holds if and only if g has nothing to do with variable y, and g is linear in variable z.

Proof (Sufficiency). Since g has nothing to do with variable y, and g is linear in variable z, then $\forall (y_i, z_i), i = \{1, 2\}$, we have

$$g(s, y_1, z_1) + g(s, y_2, z_2) = g(s, z_1) + g(s, z_2) = g(s, z_1 + z_2), \forall \xi, \eta \in L^2(\Omega, F_T, P)$$
(6)

Let
$$\begin{cases} y_{t}^{\xi} = \xi + \int_{t}^{T} g(s, z_{s}^{\xi}) ds - \int_{t}^{T} z_{s}^{\xi} dW_{s} \\ y_{t}^{\eta} = \eta + \int_{t}^{T} g(s, z_{s}^{\eta}) ds - \int_{t}^{T} z_{s}^{\eta} dW_{s} \\ y_{t}^{\xi+\eta} = \xi + \eta + \int_{t}^{T} g(s, z_{s}^{\xi+\eta}) ds - \int_{t}^{T} z_{s}^{\xi+\eta} dW_{s} \end{cases}$$

Then,

$$y_{t}^{\xi} + y_{t}^{\eta} = \xi + \eta + \int_{t}^{T} g(s, z_{s}^{\xi}) + g(s, z_{s}^{\eta}) ds - \int_{t}^{T} z_{s}^{\xi} + z_{s}^{\eta} dW_{s}$$
$$= \xi + \eta + \int_{t}^{T} g(s, z_{s}^{\xi} + z_{s}^{\eta}) ds - \int_{t}^{T} z_{s}^{\xi} + z_{s}^{\eta} dW_{s}.$$
(7)

Hence, $(y_t^{\xi} + y_t^{\eta}, z_t^{\xi} + z_t^{\eta})$ is a solution of BSDE with terminal state $\xi + \eta$. By the uniqueness of solution of BSDE, $y_t^{\xi+\eta} = y_t^{\xi} + y_t^{\eta}, \forall 0 \le t \le T$, and $y_0^{\xi+\eta} = y_0^{\xi} + y_0^{\eta}$. Therefore,

$$E_{g}(\xi + \eta) = E_{g}(\xi) + E_{g}(\eta)$$
(8)
(Necessity)

 $\forall \xi, \eta \in L^2(\Omega, \mathbb{F}_T, P), A \in \mathbb{F}_t$, we have

$$E_g[(\xi + \eta)I_A] = E_g[E_g[\xi + \eta | F_t]I_A].
 On the other hand,
 (9)$$

$$E_{g}[(\xi + \eta)I_{A}] = E_{g}(\xi I_{A} + \eta I_{A}) = E_{g}(\xi I_{A}) + E_{g}(\eta I_{A})$$

$$= E_{g}[E_{g}[\xi | F_{t}]I_{A}] + E_{g}[E_{g}(\eta | F_{t}I_{A})$$

$$= E_{g}[(E_{g}[\xi | F_{t}] + E_{g}[\eta | F_{t}])I_{A}]$$
Then,
$$E_{g}[\xi + \eta | F_{t}] = E_{g}[\xi | F_{t}] + E_{g}[\eta | F_{t}].$$
 Therefore, $y_{t}^{\xi + \eta} = y_{t}^{\xi} + y_{t}^{\eta}.$
Since
$$(10)$$

$$\begin{cases} y_{t}^{\xi+\eta} = \xi + \eta + \int_{t}^{T} g(s, y_{s}^{\xi+\eta}, z_{s}^{\xi+\eta}) ds - \int_{t}^{T} z_{s}^{\xi+\eta} dW_{s} \\ y_{t}^{\xi} + y_{t}^{\eta} = \xi + \eta + \int_{t}^{T} g(s, y_{s}^{\xi}, z_{s}^{\xi}) + g(s, y_{s}^{\eta}, z_{s}^{\eta}) ds - \int_{t}^{T} z_{s}^{\xi} + z_{s}^{\eta} dW_{s} \end{cases},$$

$$(11)$$

Then, $z_t^{\xi+\eta} = \frac{dy_t^{\xi+\eta} dv_t}{dt} = \frac{d(y_t^{\xi} + y_t^{\xi}) dv_t}{dt} = z_t^{\xi} + z_t^{\eta}$. Therefore, $g(t, y_t^{\xi+\eta}, z_t^{\xi+\eta}) = g(t, y_t^{\xi}, z_t^{\xi}) + g(t, y_t^{\eta}, z_t^{\eta})$. We are now in the way to prove that

$$g(t_0, a, b) + g(t_0, c, d) = g(t_0, a + c, b + d), \forall (t_0, a, b), (t_0, c, d) \in [0, T] \times R \times R^d.$$
(12)

Let

$$y_{t}^{1} = \begin{cases} a - \int_{t_{0}}^{t} g(s, y_{s}^{1}, b) ds + \int_{t_{0}}^{t} b ds, t_{0} < t \le T \\ a, 0 \le t \le t_{0} \end{cases},$$
(13)

$$y_{t}^{2} = \begin{cases} c - \int_{t_{0}}^{t} g(s, y_{s}^{2}, d) ds + \int_{t_{0}}^{t} dds, t_{0} < t \le T \\ c, 0 \le t \le t_{0} \end{cases},$$
(14)

and $\xi = y_T^1$. Then, $\forall t \in (t_0, T]$, (y_t^1, b) satisfies

$$y_t^1 = \xi + \int_t^T g(s, y_s^1, b) ds - \int_t^T b dW_s.$$

Suppose that $(y_t^{\varsigma}, z_t^{\varsigma})$ is the solution of

$$y_t^{\xi} = \xi + \int_t^T g(s, y_s^{\xi}) ds - \int_t^T z_s^{\xi} dW_s$$
By the uniqueness solution of BSDE
(15)

By the uniqueness solution of BSDE,

$$y_t^{\xi} = \begin{cases} a, 0 \le t \le t_0 \\ y_t^1, t_0 < t \le T \end{cases}, z_t^{\xi} = \begin{cases} 0, 0 \le t \le t_0 \\ b, t_0 < t \le T \end{cases}.$$
(16)

Especially, $(y_{t_0}^{\xi}, z_{t_0}^{\xi}) = (a, b)$. Similarly, we can find η such that $g(t_0, y_{t_0}^{\eta}, z_{t_0}^{\eta}) = g(t_0, c, d)$. From $g(t, y_t^{\xi+\eta}, z_t^{\xi+\eta}) = g(t, y_t^{\xi}, z_t^{\xi}) + g(t, y_t^{\eta}, z_t^{\eta})$, we get

$$g(t_0, a + c, b + d) = g(t_0, a, b) + g(t_0, c, d).$$
(17)
Since, $g(t, y, 0) = 0, \forall y_1, y_2$, then,
(17)

$$g(t, y_1 + y_2, z) = g(t, y_1, z) + g(t, y_2, 0) = g(t, y_1, z).$$
In the same way, $g(t, y_1 + y_2, z) = g(t, y_2, z)$. Therefore, $g(t, y_1, z) = g(t, y_2, z), \forall y_1, y_2, t, z \in R$.
(18)

That is g(t, y, z) has nothing to do with y. In the following, we will prove that

$$g(t,lz) = lg(t,z), \forall t, l, z \in R.$$
Since
(19)

$$\begin{cases} g(t,0) = g(t,z) + g(t,-z) = 0\\ g(t,z) = -g(t,-z) \\ & , \end{cases}$$
(20)

Then, $\forall m \in \mathbb{Z}^+$, we have

ſ

$$\begin{cases} g(t,mz) = mg(t,z) \\ g(t,z) = g(t,m\frac{z}{m}) = mg(t,\frac{z}{m}). \\ g(t,\frac{z}{m}) = \frac{1}{m}g(t,z) \end{cases}$$
(21)

From Eq. 21, we get that for any rational number r, g(t, rz) = rg(t, z). On the other hand, g is uniformly Lipschitz continuous in z, then $l \in R$, we have g(t, lz) = lg(t, z).

Therefore, g(t,z) is linear with z and g(t,z) = h(t)z. Then $\forall \xi \in L^2(\Omega, \mathbb{F}_T, P), l \in \mathbb{R}$, we have

$$\mathbf{E}_{g}(l\xi) = l\mathbf{E}_{g}(\xi). \tag{22}$$

In summary, E_g is a linear expectation.

Theorem2. Under the assumptions of Theorem 1, there exists a probability measure Q which makes $E_g(\xi) = E_Q(\xi)$.

Proof: $\forall \xi \in L^2(\Omega, \mathbf{F}_T, P)$,

$$y_{t} = \xi + \int_{t}^{T} g(s, z_{s}) ds - \int_{t}^{T} z_{s} dW_{s} = \xi + \int_{t}^{T} h(s) z_{s} ds - \int_{t}^{T} z_{s} dW_{s},$$
Then, $-dy_{t} = h(t) z_{t} dt - z_{t} dW_{t} = -z_{t} (-h(t) dt + dW_{t}) = z(t) dW_{t}.$
(23)

From Girsanov Theorem, there exists a probability measure Q such that W_t is B.M under Q. Hence, $y_t = \xi - \int_t^T z_t dW_t$ and $y_t = E_Q[\xi | F_t], E_g(\xi) = y_0 = E_Q(\xi)$.

Conclusions

This paper has studied the sufficient and necessary condition for Peng's g-expectation to be linear.G-expectation is linear if and only if g has nothing to do with variable y, and g is linear in variable z.Moreover, there exists a probability measure Q, under which the linear expectation is equivalent to Peng's g-expectation.

Acknowledgements

The authors acknowledge the support from the Natural Science Foundation of Shandong Province, China (ZR2015AL012).

References

- [1] M. Allais: Econometrica, Vol.21 (1953), p. 503.
- [2] D. Ellsberg: Quarterly Journal of Economics, Vol.75 (1961), p. 643.
- [3] S.G. Peng: *Backward SDE and related g-expectation* (Pitman Publications, England 1997), p.141.
- [4] S.G. Peng: Probability Theory and Related Fields, Vol.113 (1999), p. 473.
- [5] Z. Chen and L. Epstein: Econometrica, Vol.70 (2002), p.1403.
- [6] Z.Y. Yu: Automatica, Vol.56 (2012) No.6, p.1401.
- [7] Q.X. Zhang: Asian Journal of Cotrol, Vol. 16 (2014) No.4, p. 1238.
- [8] L. Chen and Z. Wu: Automatica, Vol. 46 (2010) No. 6, p.1074.
- [9] L. Chen and Z. Wu: Chinese Annals of Mathematics, Vol.32B (2011) No.2, p. 279.
- [10]E. Pardoux and S.G. Peng: Systems & Control Letters, Vol.14 (1990), p. 55.