A Sufficient and Necessary Condition for G-expectation to be Linear

Qixia Zhang ${ }^{1, \mathrm{a}}$ and Qiliang Sun ${ }^{1, \mathrm{~b}}{ }^{\text {* }}$
${ }^{1}$ School of Mathematical Sciences, University of Jinan, Jinan 250022, China
${ }^{\text {anchangqixia110@163.com, }}$, suntsiang@163.com
*The corresponding author

Keywords: Backward stochastic differential equations; Peng's g-expectation; Mathematical expectation; Lipschitz condition; Girsanov Theorem.

Abstract

In general, Peng's g-expectation is a nonlinear mathematical expectation. However, if the function $\mathrm{g}(\mathrm{t}, \mathrm{x}, \mathrm{y})$ satisfies some properties, the g -expectation is expected to be linear. For g-expectation, we have the following conclusions: The necessary and sufficient condition for gexpectation to have linear properties is that the function g has nothing to do with variable y, and g is linear with variable z . In this case, there exists a probability measure Q , under which the linear expectation is equivalent to Peng's g-expectation.

Introduction

The concept of expectation is clearly very important in probability theory. Expectation is usually defined via

$$
\begin{equation*}
E \xi=\int_{-\infty}^{+\infty} x d F(x), \tag{1}
\end{equation*}
$$

Where $F(x):=P(\xi \leq x)$ is the distribution of random variable ξ with respect to the probability measure P. One of the properties of mathematical expectation is its linearity: for given random variables ξ and η,

$$
\begin{equation*}
E(\xi+\eta)=E \xi+E \eta . \tag{2}
\end{equation*}
$$

This is equivalent to the additivity of probability measure, that is,

$$
\begin{equation*}
P(A+B)=P(A)+P(B), \quad \text { If } A \cap B=\Phi . \tag{3}
\end{equation*}
$$

From this viewpoint, we sometimes call mathematical expectation (resp. probability measure) linear mathematical expectation (resp. linear probability measure). It is well known that linear mathematical expectation is a powerful tool for dealing with stochastic phenomena. Economists have found that linear mathematical expectations result in the Allais paradox and the Ellsberg paradox, see Allais [1] and Ellsberg [2].

Peng [3, 4] introduced a kind of nonlinear expectation (he calls it the g-expectation) via a particular nonlinear backward stochastic differential equation (BSDE for short). Some applications of Peng's g -expectation in economics are considered in [5-9]. A question is the following: when is the sufficient and necessary condition for the g-expectation to be linear. We note that Peng's g-expectations can be defined only in a BSDE framework, therefore, we consider the function g.

BSDE and G-expectation

Let (Ω, F, P) be a probability space with filtration $\left(\mathrm{F}_{s}\right)_{s \geq 0}$, and let $\left(W_{s}\right)_{s \geq 0}$ be a standard d-Brownian motion. For ease of exposition, we assume $\mathrm{d}=1$. The results of this paper can be easily extended to the case $\mathrm{d}>1$. Suppose that $\left(\mathrm{F}_{s}\right)$ is the σ-filtration generated by $\left(W_{s}\right)_{s \geq 0}$, that is $\mathrm{F}_{t}=\sigma\left\{W_{s}, 0 \leq s \leq t\right\}$.

Let $T>0 \mathrm{~F}_{T}=\mathrm{F}$ and $g=g(y, z, t): R \times R^{d} \times[0, T] \rightarrow R$ be a function satisfying
(H.1) $\forall(y, z) \in R \times R^{d}, g(y, z, t)$ is continuous in t and $\int_{0}^{T} g^{2}(0,0, t) d t<\infty$;
(H.2) g is uniformly Lipschitz continuous in (y, z), that is, there exists a constant $C>0$, such that $\forall y, y^{\prime} \in R, z, z^{\prime} \in R^{d},\left|g(y, z, t)-g\left(y^{\prime}, z^{\prime}, t\right)\right| \leq C\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right)$;
(H.3) $g(y, 0, t) \equiv 0, \forall(y, t) \in R \times[0, T]$.

Let $\mathrm{M}\left(0, T, R^{n}\right)$ be the set of all square integrable R^{n}-valued, F_{t}-adapted processes $\left\{v_{t}\right\}$ with
$E \int_{0}^{T} v_{t}^{2} d t<\infty$.
For each $t \in[0, T]$, be $L^{2}\left(\Omega, \mathrm{~F}_{t}, P\right)$ the set of all F_{t}-measurable random variables. Pardoux and Peng [10] considered the following backward stochastic differential equation:
$y_{t}=\xi+\int_{t}^{T} g\left(y_{s}, z_{s}, s\right) d s-\int_{t}^{T} z_{s} d W_{s}, 0 \leq t \leq T$,
And showed the following result:
Lemma1. Suppose that g satisfies (H.1)-(H.3) and $\xi \in L^{2}(\Omega, \mathrm{~F}, P)$. Then Eq. 5 admits a unique solution $(y, z) \in \mathrm{M}(0, T, R) \times \mathrm{M}\left(0, T, R^{d}\right)$.

Using the solution of Eq. 5, Peng [3] introduced the concept of g-expectation via Eq. 5.
Definition1. Suppose g satisfies (H.1)-(H.3). Given $\xi \in L^{2}(\Omega, \mathrm{~F}, P)$, let (y, z) be the solution of Eq. 5. We denote Peng's g-expectation of ξ by $\mathrm{E}_{g}(\xi)$ and define $\mathrm{E}_{g}(\xi):=y_{0}$.

The g-expectation $\mathrm{E}_{g}(\xi)$ preserves many of the properties of classical mathematical expectation. However, it does not preserve linearity. See, for example, Peng [3] for details.

Main Results

For the linearity of g -expectation $\mathrm{E}_{g}(\xi)$ we have the following result.
Theorem $\mathbf{1} \forall \xi, \eta \in L^{2}\left(\Omega, \mathrm{~F}_{T}, P\right)$, then $\mathrm{E}_{g}(\xi+\eta)=\mathrm{E}_{g}(\xi)+\mathrm{E}_{g}(\eta)$ holds if and only if g has nothing to do with variable y , and g is linear in variable z .

Proof (Sufficiency). Since g has nothing to do with variable y , and g is linear in variable z , then $\forall\left(y_{i}, z_{i}\right), i=\{1,2\}$, we have

$$
\begin{equation*}
g\left(s, y_{1}, z_{1}\right)+g\left(s, y_{2}, z_{2}\right)=g\left(s, z_{1}\right)+g\left(s, z_{2}\right)=g\left(s, z_{1}+z_{2}\right), \forall \xi, \eta \in L^{2}\left(\Omega, \mathrm{~F}_{T}, P\right) \tag{6}
\end{equation*}
$$

Let $\left\{\begin{array}{l}y_{t}^{\xi}=\xi+\int_{t}^{T} g\left(s, z_{s}^{\xi}\right) d s-\int_{t}^{T} z_{s}^{\xi} d W_{s} \\ y_{t}^{\eta}=\eta+\int_{t}^{T} g\left(s, z_{s}^{\eta}\right) d s-\int_{t}^{T} z_{s}^{\eta} d W_{s}, \\ y_{t}^{\xi+\eta}=\xi+\eta+\int_{t}^{T} g\left(s, z_{s}^{\xi+\eta}\right) d s-\int_{t}^{T} z_{s}^{\xi+\eta} d W_{s}\end{array}\right.$,
Then,

$$
\begin{align*}
y_{t}^{\xi}+y_{t}^{\eta} & =\xi+\eta+\int_{t}^{T} g\left(s, z_{s}^{\xi}\right)+g\left(s, z_{s}^{\eta}\right) d s-\int_{t}^{T} z_{s}^{\xi}+z_{s}^{\eta} d W_{s} \\
& =\xi+\eta+\int_{t}^{T} g\left(s, z_{s}^{\xi}+z_{s}^{\eta}\right) d s-\int_{t}^{T} z_{s}^{\xi}+z_{s}^{\eta} d W_{s} . \tag{7}
\end{align*}
$$

Hence, $\left(y_{t}^{\xi}+y_{t}^{\eta}, z_{t}^{\xi}+z_{t}^{\eta}\right)$ is a solution of BSDE with terminal state $\xi+\eta$. By the uniqueness of solution of BSDE, $y_{t}^{\xi+\eta}=y_{t}^{\xi}+y_{t}^{\eta}, \forall 0 \leq t \leq T$, and $y_{0}^{\xi+\eta}=y_{0}^{\xi}+y_{0}^{\eta}$. Therefore,

$$
\begin{equation*}
\mathrm{E}_{g}(\xi+\eta)=\mathrm{E}_{g}(\xi)+\mathrm{E}_{g}(\eta) . \tag{8}
\end{equation*}
$$

(Necessity)
$\forall \xi, \eta \in L^{2}\left(\Omega, \mathrm{~F}_{T}, P\right), A \in \mathrm{~F}_{t}$, we have
$\mathrm{E}_{g}\left[(\xi+\eta) I_{A}\right]=\mathrm{E}_{g}\left[\mathrm{E}_{g}\left[\xi+\eta \mid \mathrm{F}_{t}\right] I_{A}\right]$.
On the other hand,
$\mathrm{E}_{g}\left[(\xi+\eta) I_{A}\right]=\mathrm{E}_{g}\left(\xi I_{A}+\eta I_{A}\right)=\mathrm{E}_{g}\left(\xi I_{A}\right)+\mathrm{E}_{g}\left(\eta I_{A}\right)$
$=\mathrm{E}_{g}\left[\mathrm{E}_{g}\left[\xi \mid \mathrm{F}_{t}\right] I_{A}\right]+\mathrm{E}_{g}\left[\mathrm{E}_{g}\left(\eta \mid \mathrm{F}_{t} I_{A}\right)\right.$
$=\mathrm{E}_{g}\left[\left(\mathrm{E}_{g}\left[\xi \mid \mathrm{F}_{t}\right]+\mathrm{E}_{g}\left[\eta \mid \mathrm{F}_{t}\right]\right) I_{A}\right]$
Then, $\mathrm{E}_{g}\left[\xi+\eta \mid \mathrm{F}_{t}\right]=\mathrm{E}_{g}\left[\xi \mid \mathrm{F}_{t}\right]+\mathrm{E}_{g}\left[\eta \mid \mathrm{F}_{t}\right]$. Therefore, $y_{t}^{\xi+\eta}=y_{t}^{\xi}+y_{t}^{\eta}$.
Since
$\left\{\begin{array}{l}y_{t}^{\xi+\eta}=\xi+\eta+\int_{t}^{T} g\left(s, y_{s}^{\xi+\eta}, z_{s}^{\xi+\eta}\right) d s-\int_{t}^{T} z_{s}^{\xi+\eta} d W_{s} \\ y_{t}^{\xi}+y_{t}^{\eta}=\xi+\eta+\int_{t}^{T} g\left(s, y_{s}^{\xi}, z_{s}^{\xi}\right)+g\left(s, y_{s}^{\eta}, z_{s}^{\eta}\right) d s-\int_{t}^{T} z_{s}^{\xi}+z_{s}^{\eta} d W_{s}\end{array}\right.$,
Then, $z_{t}^{\xi+\eta}=\frac{d y_{t}^{\xi+\eta} \cdot d W_{t}}{d t}=\frac{d\left(y_{t}^{\xi}+y_{t}^{\eta}\right) \cdot d W_{t}}{d t}=z_{t}^{\xi}+z_{t}^{\eta}$.
Therefore, $g\left(t, y_{t}^{\xi+\eta}, z_{t}^{\xi+\eta}\right)=g\left(t, y_{t}^{\xi}, z_{t}^{\xi}\right)+g\left(t, y_{t}^{\eta}, z_{t}^{\eta}\right)$.
We are now in the way to prove that
$g\left(t_{0}, a, b\right)+g\left(t_{0}, c, d\right)=g\left(t_{0}, a+c, b+d\right), \forall\left(t_{0}, a, b\right),\left(t_{0}, c, d\right) \in[0, T] \times R \times R^{d}$.

Let
$y_{t}^{1}=\left\{\begin{array}{c}a-\int_{t_{0}}^{t} g\left(s, y_{s}^{1}, b\right) d s+\int_{t_{0}}^{t} b d s, t_{0}<t \leq T \\ a, 0 \leq t \leq t_{0}\end{array}\right.$,
$y_{t}^{2}=\left\{\begin{array}{c}c-\int_{t_{0}}^{t} g\left(s, y_{s}^{2}, d\right) d s+\int_{t_{0}}^{t} d d s, t_{0}<t \leq T \\ c, 0 \leq t \leq t_{0}\end{array}\right.$,
and $\xi=y_{T}^{1}$. Then, $\forall t \in\left(t_{0}, T\right], \quad\left(y_{t}^{1}, b\right)$ satisfies
$y_{t}^{1}=\xi+\int_{t}^{T} g\left(s, y_{s}^{1}, b\right) d s-\int_{t}^{T} b d W_{s}$.
Suppose that $\left(y_{t}^{\xi}, z_{t}^{\xi}\right)$ is the solution of

$$
\begin{equation*}
y_{t}^{\xi}=\xi+\int_{t}^{T} g\left(s, y_{s}^{\xi}\right) d s-\int_{t}^{T} z_{s}^{\xi} d W_{s} \tag{15}
\end{equation*}
$$

By the uniqueness solution of BSDE,

$$
y_{t}^{\xi}=\left\{\begin{array}{c}
a, 0 \leq t \leq t_{0} \tag{16}\\
y_{t}^{1}, t_{0}<t \leq T
\end{array}, z_{t}^{\xi}=\left\{\begin{array}{l}
0,0 \leq t \leq t_{0} \\
b, t_{0}<t \leq T
\end{array} .\right.\right.
$$

Especially, $\left(y_{t_{0}}^{\xi}, z_{t_{0}}^{\xi}\right)=(a, b)$. Similarly, we can find $\eta_{\text {such that }} g\left(t_{0}, y_{t_{0}}^{\eta}, z_{t_{0}}^{\eta}\right)=g\left(t_{0}, c, d\right)$. From $g\left(t, y_{t}^{\xi+\eta}, z_{t}^{\xi+\eta}\right)=g\left(t, y_{t}^{\xi}, z_{t}^{\xi}\right)+g\left(t, y_{t}^{\eta}, z_{t}^{\eta}\right)$, we get
$g\left(t_{0}, a+c, b+d\right)=g\left(t_{0}, a, b\right)+g\left(t_{0}, c, d\right)$.
Since, $g(t, y, 0)=0, \forall y_{1}, y_{2}$, then ,
$g\left(t, y_{1}+y_{2}, z\right)=g\left(t, y_{1}, z\right)+g\left(t, y_{2}, 0\right)=g\left(t, y_{1}, z\right)$.
In the same way, $g\left(t, y_{1}+y_{2}, z\right)=g\left(t, y_{2}, z\right)$. Therefore, $g\left(t, y_{1}, z\right)=g\left(t, y_{2}, z\right), \forall y_{1}, y_{2}, t, z \in R$.
That is $g(t, y, z)$ has nothing to do with y . In the following, we will prove that
$g(t, l z)=\lg (t, z), \forall t, l, z \in R$.
Since

$$
\left\{\begin{array}{l}
g(t, 0)=g(t, z)+g(t,-z)=0 \tag{20}\\
g(t, z)=-g(t,-z),
\end{array}\right.
$$

Then, $\forall m \in Z^{+}$, we have

$$
\left\{\begin{array}{l}
g(t, m z)=m g(t, z) \tag{21}\\
g(t, z)=g\left(t, m \frac{z}{m}\right)=m g\left(t, \frac{z}{m}\right) . \\
g\left(t, \frac{z}{m}\right)=\frac{1}{m} g(t, z)
\end{array}\right.
$$

From Eq. 21, we get that for any rational number $r, g(t, r z)=r g(t, z)$. On the other hand, g is uniformly Lipschitz continuous in z , then $l \in R$, we have $g(t, l z)=\lg (t, z)$.

Therefore, $g(t, z)$ is linear with z and $g(t, z)=h(t) z$. Then $\forall \xi \in L^{2}\left(\Omega, \mathrm{~F}_{T}, P\right), l \in R$, we have

$$
\begin{equation*}
\mathrm{E}_{g}(l \xi)=l \mathrm{E}_{g}(\xi) . \tag{22}
\end{equation*}
$$

In summary, E_{8} is a linear expectation.
Theorem2. Under the assumptions of Theorem 1, there exists a probability measure Q which makes $\mathrm{E}_{g}(\xi)=E_{Q}(\xi)$.

Proof: $\forall \xi \in L^{2}\left(\Omega, \mathrm{~F}_{T}, P\right)$,

$$
\begin{equation*}
y_{t}=\xi+\int_{t}^{T} g\left(s, z_{s}\right) d s-\int_{t}^{T} z_{s} d W_{s}=\xi+\int_{t}^{T} h(s) z_{s} d s-\int_{t}^{T} z_{s} d W_{s}, \tag{23}
\end{equation*}
$$

Then, $-d y_{t}=h(t) z_{t} d t-z_{t} d W_{t}=-z_{t}\left(-h(t) d t+d W_{t}\right)=z(t) d W_{t}$.
From Girsanov Theorem, there exists a probability measure Q such that W_{t} is B.M under Q.
Hence, $y_{t}=\xi-\int_{t}^{T} z_{t} d W_{t}$ and $y_{t}=E_{Q}\left[\xi \mid \mathrm{F}_{t}\right], E_{g}(\xi)=y_{0}=E_{Q}(\xi)$.

Conclusions

This paper has studied the sufficient and necessary condition for Peng's g-expectation to be linear.G-expectation is linear if and only if g has nothing to do with variable y, and g is linear in variable $z . M o r e o v e r$, there exists a probability measure Q , under which the linear expectation is equivalent to Peng's g-expectation.

Acknowledgements

The authors acknowledge the support from the Natural Science Foundation of Shandong Province, China (ZR2015AL012).

References

[1] M. Allais: Econometrica, Vol. 21 (1953), p. 503.
[2]D. Ellsberg: Quarterly Journal of Economics, Vol. 75 (1961), p. 643.
[3] S.G. Peng: Backward SDE and related g-expectation (Pitman Publications, England 1997), p. 141.
[4] S.G. Peng: Probability Theory and Related Fields, Vol. 113 (1999), p. 473.
[5] Z. Chen and L. Epstein: Econometrica, Vol. 70 (2002), p. 1403.
[6] Z.Y. Yu: Automatica, Vol. 56 (2012) No.6, p. 1401.
[7] Q.X. Zhang: Asian Journal of Cotrol, Vol. 16 (2014) No.4, p. 1238.
[8] L. Chen and Z. Wu: Automatica, Vol. 46 (2010) No. 6, p. 1074.
[9] L. Chen and Z. Wu: Chinese Annals of Mathematics, Vol.32B (2011) No.2, p. 279.
[10]E. Pardoux and S.G. Peng: Systems \& Control Letters, Vol. 14 (1990), p. 55.

