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Abstract. The nervous system is composed of a large number of neurons, and the electrical 

activities of neurons can present multiple modes during the signal transmission between neurons by 

changing intrinsic bifurcation parameters or under appropriate external forcing. In this review, the 

dynamics for neuron, neuronal network is introduced, for example, the mode transition in electrical 

activity, functional role of autapse connection, bifurcation verification in biological experiments, 

interaction between neuron and astrocyte, noise effect, coherence resonance, pattern formation and 
selection in network of neurons. Finally, some open problems in this field such as electromagnetic 

radiation on electrical activities of neuron, energy consumption in neurons are presented. 

Introduction 

The Diseases associated with nervous system have brought much pain and anxiety for patients. As 

a result, clinical diagnosis such as big data analysis based on functional magnetic resonance 

imaging (fMRI) [1], computational neurodynamics, and cognitive neurodynamics have been paid 

much attention. It is believed that potential mechanism for abnormality [2] in nervous system could 
be discerned by detecting dynamic behavior of central nervous system and discovering general 

theories of cognitive functions in terms of theoretical biophysics. The brain is a high-dimensional 

nonlinear system and its collective electrical activities are dependent on signal propagation among 

one hundred billion neurons and also a variety of gliocytes. 

Cognitive neurodynamics is considered capable of information processing in the nervous system. 

Theoretical models have been set up at different levels ranging from microcosmic, mesoscopic, up 

to macroscopic scale, so that the generation of cognition and potential mechanisms underlying 

neural information processing could be discerned. Indeed, the deterministic neuronal models could 

be available for bifurcation analysis, synchronization transition between neurons and networks, 

networks of networks, and information encoding. Furthermore, some reliable neuronal circuits 

could be implemented for signal detection as sensors. Some biological experiments and also 
theoretical neuronal models have shown that single neuron exhibits rich dynamical behaviors such 

as periodic spiking. Multistability is an important feature of the nervous system. For certain 

dynamical system with given parameters,it is considered that this system has multistable 

phenomenon [3] when the final developed state is dependent on the selection of initial values. 

Multistability provides certain convenience for functional diversity of the nervous system, and 

the changes of initial values can alter final states of the system [4].The application of stability 

theory could provide sufficient conditions for multi-resting states of the neuronal networks, and 

coexistence of multi-periodic states could be generated by applying appropriate peripheral external 

stimulation [5]. 

The topic about neural coding and decoding in neuroscience is the most challenging problem. 
Indeed, the nerve system develops its self-adaption that the neural activities in the brain must 

consume the minimal energy to keep normal activities during the process of signal transmission the 

brain’s information-processing capacity is much dependent on the amount of energy supplied by 

blood flow in active brain areas. The technology of functional magnetic resonance imaging is 

available to discern the brain activity [6], but the activity of blood flow cannot be described exactly. 
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It is believed that neural information can be expressed by energy [7]
 
that the energy can be used to 

unify the neural models of various levels. Unfortunately, the investigation about energy 

consumption in the nervous system has been carried on experiments instead of quantitative 
theoretical analysis due to the brain complexity. Interestingly, most of neuronal models are 

described by a variety of oscillators and we argued that dimensionless Hamilton energy function 

based on Helmholtz’s theorem could be effective to detect the mode transition in electrical 

activities. 

Neurons are widely accepted to be organized into networks, and neuronal networks exchange 

information through electrical and chemical synapses. Increasing evidences indicate that astrocytes 

are also organized into networks [8], and astrocyte networks are interconnected through gap 

junction channels. The channels are regulated by extra- and intracellular signals that enable the 

exchange of information. Based on these two networks, a recent review paper suggests the concept 

of ‘‘astroglial networks’’ [9]. Many recent modeling works focus on the neuronal synchronization 

in the astroglial network [9-10]. As an example, by integrating Norris-Lecar neuron model and 
Li-Rinzel calcium model, Amiri et al. constructed a model to study how astrocytes participate in 

the interplay between the pyramidal cells and interneurons [11]
.
 Furthermore, they extended their 

three-unit model to a neuronal population model to study the effect of astrocyte on neuronal 

synchronization. Astrocytes are concluded to be capable of changing the threshold value of 

transition from synchronous to asynchronous behavior among neurons [12]. 

Preliminaries 

The information transmission between neurons is studied by using a model that contains two 
neurons and one astrocyte. First, we identify the parameter region in which the information can be 

transferred from N1 to N2. The effect of astrocyte does not influence this parameter region [13]. 

Secondly, in the parameter region for information transmission, we find BLSs in two neurons 

simultaneously. The parameter values for the occurrence of BLSs are also identified, and the results 

show that the higher expression level of mGluRs and the existence of astrocyte facilitate the 

occurrence of BLSs. Meanwhile, the rate for the occurrence of BLSs is calculated, and the rate is 

not very sensitive to the parameters. Third, time delay in information transmission is studied 

although glial cells have been widely accepted to serve an important function in synaptic 

transmission in neuron system, theoretical knowledge on the mechanism of interaction between 

glial cell and neurons is lacking. The modeling studies in this paper can help us to understand the 
mechanism by which the astrocytes participate in neuronal information transmission. Based on the 

WEH effect [13-14], we present a new method to liberate pinned spiral waves on heterogeneities. 

The effect of autapses on collective behaviors of neuronal network is detected by imposing 

time-delayed feedback current on membrane of neuron, and thus electric activities of neurons are 

regulated in close loop. As reported by previous works, the feedback autapse current is dependent 

on the gain and time delay. To approach realistic model, diversity in time delay (and gain) in 

autapses are considered. It is found that target waves can be induced and then some target waves 

can convert into spiral waves and regulate the collective behaviors of network like pacemaker. 

Under appropriate coupling intensity, spiral wave can coexist with target waves, or perfect spiral 

waves can grow up and regulate the network synchronously. 

The free end of the emitted wave is generated by the REF itself from the rotating 
hyper-polarization instead of touching the refractory tail of the spiral in EP [15]. Consequently, the 

time window to apply pulse for successful liberation is much wider in REF than that in EP, which 

makes the REP more efficient. There are different heterogeneities in the cardiac tissue, such as 

blood vessels, fatty tissue, boundaries between regions of different fiber alignment directions, and 

intercellular clefts. Thus, during cardiac arrhythmia, various spiral waves with different 

frequencies, phase, and rotation direction may be pinned in various obstacles with different size. 

That means it is impossible to find an optimal rotating frequency, phase, and rotation direction of 

REP. A possible treatment of actual application is just letting the EP rotate so that to increase the 
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efficiency, like that presented obviously. We address one point that the amplitude and duration of 

the REP is kept as that in EP, which indicates no additional energy is required while its efficiency is 

increased. We hope this strategy may improve manipulations with pinned spiral waves in related 
experiments, in cultured cardiac my ocytes. Lastly we study the repulsive and attractive forces 

exerted on a spiral wave by the heterogeneity in an excitable medium. We apply external fields to 

push the spiral tip into the heterogeneity, or to push the pinned tip out of the heterogeneity. The 

critical values of the intensity of the external fields Er and Ea are used to quantify the forces. We 

find that repulsive and attractive forces increase with the enhancement of the level of heterogeneity 

for both parametric heterogeneity and impermeable inclusions. Notably, the attractive force is much 

larger than the repulsive force for all parameter values, suggesting that unpinning of the spiral tip is 

more difficult than pinning. Finally, the comparison shows that, for small-sized heterogeneities, the 

level and the size of heterogeneity both influence the forces remarkably. However, for large-sized 

heterogeneities, the forces are independent of the size, but are influenced by the level of the 

heterogeneity. This work may shed some light on the control or suppression of spiral waves. 

Spectral Properties of the Temporal Evolution of Brain Network Structure 

FMRI Data Preprocessing. The functional images were preprocessed based on AFNI 

(http://afni.nimh.nih.gov/afni/)34 and the FSL software Library (http://www.fmrib.ox.ac.uk/fsl/). 

The first four volumes were excluded from analysis due to the initial stabilization of the fMRI 

signal. For each subject, motion correction was performed through a 3D image realignment with 

the AFNI program 3dvolreg function, which uses a weighted least-squares rigid-body registration 

algorithm. Echo planar imaging (EPI) images were motion and slice-time corrected and spatially 
smoothed using a Gaussian kernel of 6mm full width at half maximum (FWHM). The temporal 

band-pass filtering (0.009 Hz<f<0.1 Hz) was performed to reduce the effects of low-frequency drift 

and high-frequency physiological noise. After eliminating redundant information pertaining to 

cerebrospinal fluid (CSF) and white matter, fMRI data were further spatially normalized to the 

Montreal Neurological Institute (MNI) EPI template and resampled to a 3mm cubic voxel. 

Construction of Dynamic Brain Network. The time series for each ROI was first collected by 

averaging the voxel time series within the ROI. Then, the dynamic Pearson correlation coefficients 

between the time series of all pairs of brain ROIs were computed based on a sliding window with a 

sliding step of one TR. The calculation was carried out as follows: 
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Where            are the fMRI time series from time t to time t t+ W for different ROIs and 

            are the average values corresponding to the time series, respectively. The W is the 

width of the sliding window, N is the total number of sampled points in each ROI, and the relation 

between N and W is TR. 

Random Matrix Theory. RMT investigates the spectral fluctuation of complex systems by 

separating the intrinsic properties from the random universal part. To obtain more universal 
properties of spectral fluctuation, all eigenvalues must be placed on the same footing and work at a 

constant spectral density on average, which is performed by removing the spurious effects caused 

by variations in spectral density. Thus, it is customary in RMT to unfold eigenvalues k through 

transformation 
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)()( measures the probability of an eigenvalue falling within the 

intervals ],[ min i Because the function N is unknown, the unfolding process is implemented with 

the help of numerical curve fitting.The NNSD calculated from complex systems can be predicted 

by the Brody formula 
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Discussion 

Most previous studies on neural network analyzed the spectral properties of time-evolution 

functional connectivity within and between different brain sub networks at a sub-second resolution 

with the aim of understanding how to detect the non-stationary statistical behavior of the dynamic 

brain system. We first found that the shifting of eigenvalue distribution and the decrease in the 

largest eigenvalue are affected by visual stimulation. Then, using RMT, we not only predicted the 

universal behavior of the dynamic brain network but also demonstrated the effective role of 

long-range correlation among spectra in characterizing changes in the dynamic brain network 

caused by visual stimulation. To further analyze the dynamic brain network with RMT, we 

explored the long-range correlation among spectra. The greatest difference between short-range 
correlation and long-range correlation is that long-range correlation counts integrated eigenvalue 

fluctuations for more brain regions this result strongly indicates that long-range correlation indexes 

can gather small changes in contribution corresponding to brain regions and can effectively 

distinguish functional changes in the brain caused by visual stimulation. Further, we observed a 

more random WBN, which means that the visual stimulation activates the whole brain with a 

positive effect. The eigenvalues of complex systems can completely shed light on the whole 

properties and have different meanings in different systems, such as the intrinsic frequency in 

mechanical systems and energy levels in nuclear physics systems. 
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