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Abstract: Stress redistribution induced by excavation often results in tensile zones in the surrounding
rock mass. It is of great theoretical and practical significances to analyse the localizations of
deformation and damage and to study the complete stress-strain relation for mesoscopic heterogenous
rocks under uniaxial tensile loading. Based on damage mechanics, the complete stress-strain relation,
including linear elasticity, non-linear hardening, rapid stress drop and strain softening, is obtained. The
rapids tress drop and strain softening are due to localizations of deformation and damage. The
constitutive model, which analyzes the localizations of deformation and damage, is distinct from the
conventional model, and theoretical predictions have shown consistency with the derived results.

Introduction

A project that NGI was involved in some years ago in southeast Asia has been chosen as an example
to demonstrate the use in UDEC-BB. This work involved a triple lane traffic tunnel in volcanic tuff.
Details of the actual jointed mass assumed to represent this tunnel are discribed later. The tensile
stress is often produced in the unloading of the excavation of the slope and underground works. And
the tensile stress increases with the increase of the size of tructure. Because of rock body is very small,
so the deformation characteristics under the action of tensile stress does cannot ignore. It plays an
important role in the stability evaluation of slope and underground. Under the action of tensile stress,
the stress and strain of rock under uniaxial tension is important. Relationship has important theoretical
and practical significance, in spite of the tensile stress on the rock. The deformation characteristics
under the action of force are some valuable experimental research. But the theoretical research is not
much, and the former model is only too low. In order to study the relationship between the ultimate
load and the ultimate load, the main original results of the deformation and the actual observed
deformation are obtained. For this reason, this paper focuses on the limit load of rock under uniaxial
tension and later constitutive relation.

Non Uniformity of Theoretical Model

If the deformation of rock under uniaxial tensile loading is made up of the deformation of rock mass
and microcrack, the deformation of rock under uniaxial tensile loading is composed of the linear
elastic deformation of rock, patulousness of microcrack and the first stably patulous deformation、
second unstably patulous deformation。

The relation of stress-strain of rock under uniaxial tensile loading takes the following form:
0 1 2 3i i i

ik ik ik ik ikε ε ε ε ε= + + + （1）
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Where, 0
ikε , 1i

ikε , 2i
ikε , 3i

ikε respective is the linear elastic deformation of rock, patulous deformation of

microcrack, the first stably patulous deformation of microcrack, and the second unstably patulous
deformation of microcrack.

The linear elastic deformation of rock can be resolved by Hoke dinglv. It is assumed that the half of

microcrack sizes randomly vary within the range ( 0c , 1c ) ,

Where 0c is the minimal half length, and the 1c is the maximal half length. θ is the direction

angle, 22σ is the far field tensile stress. As shown in Fig 1.

Fig.1 Crack-weakened rock subjected to uniaxial tensile loading
Under uniaxial tensile loading, the stress intensity factors at the crack tip take the following form:
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where KⅠ and KⅡ are the mode I and II stress intensity factors ,respectively .
The criterion of microcrack growth in a stable fashion is:

ICI KK = （3）

in which KIC is the mode I critical stress intensity factor at weak plane. Substitution of (1) into (2) ,we
have

22 2cos
ICK

c
σ

θ π
= （4）

From (3), it is clear that the first microcrack to become unstable are oriented along θ=0 direction
and with maximum initial size c1, the corresponding threshold load is defined as:

1
2 c

K IC
c

π
σ = （5）

Since microcrack sizes randomly vary within the range (2c0,2c1),the maximum and minimum
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microcrack size c1 and c0 should be used in (3) instead of c in order to determine the critical domain
of unstable microcrack growth.Therefore. (2) and (3) render the orientations(0,θu1 )and(0,θu0 )at which
the largest and smallest microcraks become unstable and increase in size :
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In addition ,at a specified microcrack orientationθ within the range (0,θu1 ), the minimum
microcrack size required to activate mode I growth can be evaluated from (3):

θπσ 42
2

2
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01 cos
cKc = （7）

If 0＜σ2＜σ2c , that is ,the stage of linear elasticity ,no microcrack growth begins .The compliance
tensor attributable to a single open crack is given by (sumarac and krajcinovic 1987[8], J .W .Ju
1991[9])
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where A0 is the representative element area of rock material , E0 is Young’s modulus ,υ0 is poission ’s
ratio ,gij are the components of the transformation matrix between the two coordinate system.
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The Complete Stress-strain Relation for Rocks

The inelastic compliance tensor due to all preexisting open microcracks with the original sizes can be
evaluated by:
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where ρ=2Nπ/A0 ,N is the number of microcracks ,A0 is the representative element area of rock
material ,p(θ) and p(c) are the probability density function describing the distribution of orientations
and sizes of microcracks in rock material ,respectively. E0 is Young’s modulus ,υ0 is poission’s ratio.

The overall effective compliance tensor can be obtained as
10 i

ijijij SSS += （11）

in which 0
ijS is the elastic and isotropic compliance of an undamaged rock material with Young’s

modulus E0 and poission ’s ratioυ0. During the stage , the stress-strain relation take the following form :

2
10 )( σε i

ijijij SS += （12）

If σ2=σ2c ,the microcracks in the planeθ=0 with maximum initial size 2c1 become unstable and
increase in size until reaching a characteristic length 2c2.
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Ifσ2c≤σ2＜σ2cc (σ2cc is ultimate strength of rock material), that is ,the stage of pre-peak nonlinear
hardening ,more microcracks become activated ,the compliance tensor contributions from stable and

unstable microcracks , 21 , i
ij

i
ij SS can be computed as follows ,respectively:
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The overall effective compliance tensor can be expressed as:
210 i

ij
i
ijijij SSSS ++= （14）

During the stage ,the stress-strain relation can be written as

2
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Under high stress ,some microcrack arrested by the energy barriers, like grain boundaries, will
satisfy the second growth criterion and propagate in an unstable fashion,causing localization of
deformation and damage , the second growth criterion can be written as :

ICCI KK = （15）

where ＫICC is the critical value of SIF describing the resistance of rock material against microcrack
growth.

According to (1)and (14), it is clear that the first microcrack to become unstable are oriented along
θ=0 direction and with maximum initial size c2, the corresponding peak load is defined as :
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Ifσ2＜σ2cc ,no microcrack propagates in an unstable fashion .
Ifσ2=σ2cc ,that is ,the stage of rapid stress drop, some microcracks nearly normal to the tension

direction and with maximum size c2 propagate in an unstable fashion .As mentioned above, the
distribution of sizes and orientations of microcracks in rock material can be described by the
probability density function p(c) and p(θ) ， respectively. If the number of microcracks normal to
tensile direction is zero, it is assumed that microcracks whose orientations are within a small
orientation scope 0≤θ≤ θcc and with maximum initial size c2 propagate in an unstable fashion .

Once Eqn(15) is satisfied by microcracks whose orientations are within a small orientation scope
0≤θ≤ θcc and with maximum initial size c2, they will experience the secondary unstable growth ,which
may cause a transition from the distributed damage to the localization of damage and a rapid stress
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drop at the transition strainεcc.During the stage ,only microcracks whose orientations are within a small
orientation scope 0≤θ≤ θcc and with maximum size c2 propagate further and other microcracks undergo
elastic unloading. In strain-controlled tests, the deformation which has received contributions from all
microcracks during the first two stages concentrates gradually to the minority of microcracks
experiencing the secondary growth ,which results in a localization of deformation. Therefore , the
macroscopic stress drop is the result of the localization of damage and deformation.

The relation between c3 and σ can be obtained approximately from the criterion (15) ,we have
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The compliance tensor due to the microcracks experiencing the secondary growth can obtained by
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The compliance tensor contributions from unstable microcracks can be evaluated as:
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The compliance tensor attributing to stable microcracks can be computed as:
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During the stage ,the stress-strain relation can evaluated by:
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During the stage of stress drop ,the strain maintains constant, we have

22 εε =cc （22）

where ε2cc is the axial strain at peak loadsσ2cc ,ε2 is the axial strain during stage of stress drop .
According to (20),the magnitude of the stress drop can be determined. It is assumed that the stage

of rapid stress drop intersects that of tension softening at the point where the value of stress is σsc .
If σ2＜σsc ,that is, the stage of strain softening. During the stage of strain softening, some of the

microcracks which have undergone the secondary growth will propagate further, while other
microcracks will simultaneously experience unloading. Meanwhile the growth criterion (15) must be
satisfied by microcracks whose orientations are within a small orientation scope 0≤θ≤ θcc and with
maximum initial size c2. The compliance tensor due to the microcracks experiencing the secondary

growth ,unstable microcracks and stable microcracks 123 ,, i
ij

i
ij

i
ij SSS can be evaluated by

52



(18),(19)and (20).
The stress-strain relation can be computed by

2
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It is assumed that all microcrack are distributed uniformly in the orientations and sizes space The
stress-strain relation for microcrack - weakened rock under uniaxial tensile loading can be expressed as
(for plane strain):
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For mesoscopic heterogeneous rock , the probability density function describing the distribution of
the orientations of microcracks p(θ) is approximated perfectly by Weibull distribution:
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where m is Weibull modulus ,θ0 is characteristic angle。
The probability density function describing the distribution of the sizes of microcracks p(c) is

approximated perfectly by Rayleigh function
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where c00 is characteristic length ,A is the normalization constant (A=2/c00)
To simplify the analysis ,it is assumed that m=1, the stress-strain relation for mesoscopic

heterogeneous rock under uniaxial tensile loading is given as :
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Conclusions

In this paper, the single axial tension condition is studied by using the theory of micro mechanics, The
paper gets some useful results as following:

(1) The main damage mechanism of uniaxial tension is self-similar, the deformation of rock in the
tensile process can be decomposed into the deformation and crack of the rock matrix, the extension of
the pattern, a stable expansion, and two times the instability of the extended deformation.

(2) The constitutive relation of micro cracks in the uniaxial tension process includes four steps:
linear elasticity, nonlinear hardening, stress reduction and strain softening. The model has analyzed the
mechanism of meso damage and constitutive relation of each stage. It is pointed out that the stress drop
and strain softening are distributed damage to the injured. The unstable propagation of the micro crack
is caused by the transition of the damage localization, and the damage localization is introduced into
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the material. The damage constitutive relation is another important difference between the previous
damage models.

(3) The model can take into account the mesoscopic heterogeneity of rock material, As long as the
fine distribution of the rock material, it can be concluded stress-strain relationship of whole process.
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