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Abstract. This paper deals with two Parallel Surface Cracks of infinite plane. By using a hybrid 
displacement discontinuity method (a boundary element method) proposed recently, two Parallel 
Surface Cracks of infinite plane models are analyzed in detail. By changing the geometrical forms and 
parameters of crack, which is a model frequently used in fracture mechanics, the effect of the 
geometrical forms and parameters of crack on the stress intensity factors (SIFs) of two Parallel Surface 
Cracks of infinite plane specimen, is revealed. Some geometric parameters are introduced here, which 
are used to formulate two Parallel Surface Cracks of infinite plane. 

Introduction 
Due to the stress concentration effect around the hole, cracks are likely to initiate at the hole under 

the action of fatigue loading. Consequently, a number of papers dealing with hole edge crack problems 
(called hole crack problems for short) are available, see Ref.[1].The hybrid displacement discontinuity 
method differs from hybrid boundary element, when used to analyze the SIFs of a branched crack, 
require the plate to be modeled as a finite plate of huge dimensions by fictitious stress elements, while 
the crack could be modeled by displacement discontinuity elements. This brings about a higher 
computational effort. While the hybrid displacement discontinuity method was used to analyze crack 
problem with very high accuracy and efficiency [2-3]. 

Pan [4] pointed out that the displacement discontinuity method is quite suitable for cracks in infinite 
domain where there is no no-crack boundary. However, it alone may not be efficient for finite domain 
problems, since the kernel functions in DDM involve singularities with order higher than those in the 
traditional displacement BEM”. Recently, the hybrid displacement discontinuity method was used by 
Yan [5-6] to calculate the SIFs of complex plane cracks in a finite plate. The numerical results showed 
that the numerical approach was also simple, yet very accurate.  

In addition, it was found from previous investigations that the hybrid displacement discontinuity 
method was both accurate and efficient for analyzing a multiple void-crack interaction [7-12]. 

Brief Description of the Hybrid Displacement Discontinuity Method 
In this section, the hybrid displacement discontinuity method presented by Yan [13] is described 

briefly. It consists of the constant displacement discontinuity element presented by Crouch and 
Starfield [14] and the crack-tip displacement discontinuity elements. 

Constant Displacement Discontinuity Method 
The displacement discontinuity Di is defined as the difference in displacement between the two sides 

of the segment [14] (see Fig.1): ),()( 21== iDD ii ξ  
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Fig.1 Schematic of constant displacement discontinuity components Di 
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G and v in these equations are shear modulus and Poisson’s ratio, respectively. Functions F2 
through F7 are described in Ref. [15]. Eqs (3) and (4) are used by Crouch and Starfield[14] to set up a 
constant displacement discontinuity boundary element method. 

The solution to the subject problem is given by Crouch and Starfield [14]. The displacements and 
stresses can be written as 
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Function ),( yxf in these equations can be written as : 
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Crack-Tip Displacement Discontinuity Elements  
By using the Eqs (3) and (4), recently, Yan [13] presented crack-tip displacement discontinuity 

elements, which can be classified as the left and the right crack-tip displacement discontinuity elements 
to deal with crack problems in general plane elasticity. The following gives basic formulas of the left  
upaccording to the manner in which discontinuity elements is crack-tip displacement discontinuity 
element.For the left crack-tip displacement discontinuity element (see Fig.2), its displacement 
discontinuity functions are chosen as 
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Fig.2 Schematic of the left crack tip displacement discontinuity element 

where Hs and Hn are the tangential and normal displacement discontinuity quantities at the center of 
the element, respectively, atip is a half length of crack-tip element. Here, it is noted that the element has 
the same unknowns as the two-dimensional constant displacement discontinuity element. But it can be 
seen that the displacement discontinuity functions defined in (7) can model the displacement fields 
around the crack tip. The stress field determined by the displacement discontinuity functions (8) 
possesses r–1/2 singularity around the crack tip. 

Based on the Eqs (3) and (4), the displacements and stresses at a point (x, y) due to the left crack-tip 
displacement discontinuity element can be obtained, 
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and 
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where functions B2 through B7 are described in Ref. [16].  

Computational Formulas of the Stress Intensity Factors  
The objective of many analyses of linear elastic crack problems is to obtain the SIFs KI and KII. 

Based on the displacement field around the crack tip, the following formulas exist 
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Two Parallel Surface Cracks with the Same Length 2a and the Same Depth h 

Shown in Fig.3 is a planform of two parallel surface cracks with the same length 2a and the same 
depth h subjected to uniform stress σ at infinity. For this crack problem, the symmetry condition can be 
used. The following geometry parameters are considered 

9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0,05.0/ =da       0.2,8.1,6.1,4.1,3.1,2.1,1.1,0.1/ =ah  
Regarding discretization, 20 boundary elements with a same size, a/20, are discretized for a half of the 
crack AB shown in Fig.3. The calculated SIFs normalized by aπσ  are given in Fig.4.  

(a) When the distance between the two surface cracks is very large, for example, 2a/d=0.02, the 
normalized SIFs at the crack tip B are not affected by the surface crack A’B’ no matter what h/a is large 
or small. At this time, the normalized SIFs at the crack tip B calculated by the present numerical 
approach ought to agree with those predicted by using (9).  
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(b) With increase of h/a, the surface cracks AB and A’B’ tend to penetrated cracks. When h/a 
reaches 2.0, the surface cracks AB and A’B’ can be regarded as penetrated cracks. At this time, the 
normalized SIFs at the crack tip B calculated by the present numerical approach ought to agree with 
those of the two parallel penetrated cracks.  

The two points above illustrate the accuracy of the present numerical approach for analyzing such 
a surface crack problem shown in Fig.4. 

The calculated normalized SIFs at the crack tip B given listed in Fig.4. can be used to reveal the 
effect of geometry parameters, 2a/d and h/a, on the normalized SIFs. In order to conveniently observe 
this effect, Fig.4 shows variation of the normalized SIFs at the crack tip B with h/a for three cases: 
2a/d=0.02, 1.0 and 5.0. 

           
Fig.3 Schematic of a planform  of two parallel surface cracks 
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Fig.4 Variation of normalized SIFs at the crack tip B with h/a 

Conclusions 
A numerical approach for two Parallel Surface Cracks of infinite plane was presented in this paper. 

Numerical examples showed that the numerical approach is simple, yet accurate for calculating the 
SIFs of two Parallel Surface Cracks of infinite plane. When the distance between the two surface 
cracks is very large, the normalized SIFs at the crack tips A and B are not affected by the surface crack 
A’B’ and FA≈FB no matter what h/a is large or small. With increase of h/a, the surface cracks AB and 
A’B’ tend to penetrated cracks.  
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