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Abstract. In this paper, we mainly propose a new semi-discrete central-upwind scheme to solve a 
MCLWR model based on fifth order improved WENO-Z reconstruction and semi-discrete 
central-upwind numerical fluxes. By introducing the new WENO-Z reconstruction, the order of 
accuracy of the schemes is improved, and preserve essential non-oscillatory property. The main 
advantage of this procedure is that the capacity of much better resolution at the smooth parts of the 
solution, while keeping the same numerical stability of the original WENO-Z at shocks and 
discontinuities. This property must be contrasted with classical upwind WENO schemes. The time 
integration we adopt is the third order TVD Runge-Kutta scheme. The effectiveness of our method is 
demonstrated in several numerical examples.  

Introduction 
The fluid mechanics of traffic flow models treat the traffic flow as compressible continuous medium 
consist of large amounts of vehicles, and investigate average behavior of vehicles cluster. The 
development of this model was derived from the LWR model [1]. The LWR model can describe a 
variety of real traffic phenomena such as shock formulation and the dispersion of the traffic jam, 
however the vehicles always derive at this equilibrium velocity, cannot reveal vehicles motion at the 
non-equilibrium. To overcome deficiencies of the LWR model, many kinds of multi-class LWR models 
were proposed, the model proposed by Wong and Wong [2] is researched much recently, this model 
can simulate the influence of vehicles with different velocity in congested and non-congested traffic 
regime, such as overtaking as well as slower vehicles would slow down the faster ones. 

In numerical simulations, many efforts were done for MCLWR model, Zhang et al.[3] applied the 
weighted essentially non-oscillatory(WENO) scheme to the MCLWR model with heterogeneous 
drivers, and Chen et al.[4] adopted the fourth relax scheme, and Ngoduy and Liu [5] use the first order 
HLLE(Harten-van Leer-Lax and Einfeldt) scheme and so on. 

In this paper, we research another high-resolution numerical method, which is semi-discrete 
central-upwind scheme [6] based on an improved WENO-Z reconstruction and strong 
stability-preserving Runge-Kutta method [7]. 

The MCLWR Model 
In this section, we recall the MCLWR model [2] proposed by Wong and Wong, which was extended 
from the LWR model [1]. Let there be M classes of road users with different speed choice behaviors in 
response to the same traffic density when traveling on a highway section, then apply the continuity 
equation for each different user classes. Let ( , )m x tρ  and ( , )mu x t denote the density and speed of user 
class m , respectively. The MCLWR model can be written in conservation form as 

( ) 0t xU F U+ = ,                                                                                  (1) 

where [ ]T
1 2, , , MU ρ ρ ρ= …  and [ ]T

1 21 2( ) , , , MMu uF uU ρ ρ ρ= … .Introducing the speed-density 
relationship presented by Wong and Wong 

( , ) ( ), 1,2, ,m mu x t v m Mρ= ∀ = …                                              (2) 
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According to Zhang et al. [8], U  satisfy 
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where jamρ  is the jam density, the eigenvalues 1{ }M
m mλ =  of the Jacobian UF  satisfy 
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Numerical Schemes 
We apply the central-upwind scheme to solve the MCLWR system which is proposed by Kurganov et 
al. [6] for solving hyperbolic conservation laws. For simplicity, we consider the case of the uniform grid. 
The computational domain is discretized into a uniform mesh of N grid points: 

; 1, 2, ,jx j x j J= ∆ = …                                                        (6) 
where x∆  is the uniform mesh size on the spatial axis. 

Denote the cell-average in the cell 1 1
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For the multi-class case with 2M > , it’s difficult to obtain eigenvalues of the system explicitly [8, 
9]. Therefore, in this paper, the estimate of the local speed is based on a set of staggered inequalities of 
eigenvalues Eq. 5 
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Finally, our semi-discrete central upwind scheme can be written in the following conservation form 
[6] 
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Here, the numerical fluxes 1
2

j
H

+
 are given by [10]  
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Compared with classical WENO or WENO-Z reconstructure, we adopted an improved WENO-Z 
method in terms of higher resolution.  
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where [11] 
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The weights kw  are defined as [12]  
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where we set 2p = , 2/3xλ = ∆  empirically in our tests. The smoothness indicators kβ  and ideal 
weights kd  can be found in [11].  

For the time discretization, we adopt the third order TVD Runge-Kutta method [11]: 
(1) [ ] [ ] [ ] [ ]

(2) [ ] (1) [ ] (1) [ ] [ ]

[ 1] [ ] (2) [ ] (2) [ ] [ ]
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                           (13) 

Numerical Experiments 
We considered an example of nine classes of road users studied by Wong and Wong (2002) to illustrate 
the capability of the MCLWR model in properly describing platoon dispersion. Consider a 2 km long 
highway. We adopt the speed-density relationship modified from Drake et al. (1967), 

2
f 0( ) exp( ( / ) / 2), 1, 2, ,9,m m mu v u mρ ρ ρ= = − = …                        (14) 

where fmu  is the free flow speed of user class m , and the optimal density 0ρ  was set to 50 veh ⋅ km 1− . 
The distribution for these user classes is presented in Fig.1. 
 
case 1(Non-congested traffic regime) The initial platoon in the non-congested traffic regime is shown 
in Fig.2. The Fig.3 gives the computational results of two schemes by using 400N =  grid points, here 
the CFL is taken as 0.48 and the output time is 0.015t = h. The solid line in figures computed by 12800 
grid points is considered as the exact solution. As can be seen from Fig.3, our method in this paper have 
higher resolution, and is superior to the WENO-Z scheme. The Fig.4 gives the results of total density at 
different times, we can see the evolution of the platoon dispersion and staircases presence, user classes 
could overtake and drive at desired rate in non-congested traffic regime, the tail and the font of the 
platoon has dispersed off gradually with times evolution. 
 
case 2(Congested traffic regime) The initial platoon in the congested traffic regime is shown in Fig.5. 
The Fig.6 gives the results of two schemes at 0.045T = h. The Fig.7 gives the pictures of total density 
at different times. It is clear to see that dispersion at the tail of the platoon is limited and ongoing 
gradually later until its density value has dropped to near or below certain critical values which are the 
optimal densities. When the platoon has a density less than the optimal density, the traffic regime is 
non-congested, the procedure of platoon dispersion is similar to that in non-congested traffic regime, 
while the front of the platoon can disperse gradually with time evolution due to the empty vehicles 
downstream. 
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Fig. 1: Platoon dispersion: Distribution of free speed 

                                          
      Fig. 2: Non-congested regime:                                        Fig. 4: Non-congested regime: 

Initial platoon                                                               density of various times 

                                          
(a) T=0.015h, total density                                               (b) Zoom at [0.92,1.05] 

Fig. 3: Comparison between WENOZ+ scheme and WENOZ scheme at non-congested state 

                                         
Fig. 5: Congested regime:                                                  Fig. 7: Congested regime:  

                       Initial platoon                                                             density of various times 

                                          
(a) T=0.045h, total density                                                    (b) Zoom at [1.15,1.45] 

Fig. 6: Comparison between WENOZ+ scheme and WENOZ scheme at congested state 
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Conclusions 
In this paper, we have derived a high-resolution scheme for the MCLWR model. This new method is 
based on an improved WENO-Z reconstruction and semi-discrete central-upwind numerical fluxes, 
and it take full advantages of the simplicity and practicality of SDCU numerical fluxes and the 
WENO-Z reconstruction with high order of accuracy and non-oscillatory property. Numerical 
examples show that the method in this paper have higher resolution and less numerical dissipation. In 
the future, the advanced research on traffic flow problem will have a positive effect on energy and 
environment field. 
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