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Abstract. This paper reports an approach to derive the explicit solutions of the dispersion equation 
of a liquid jet with small viscosity in high velocity coaxial air stream. The dispersion equation, 
which contains the relationship of the growth rate and wavenumber, is very complex when taking 
the viscosity into account. Researchers have to use the numerical method to analyze the disturbance 
on the jet surface. The explicit solution is more concise to understand the effect of physical 
parameters on the jet breakup than the numerical one, and the results show that the explicit solution 
is applicable for small viscosity liquid jet in high velocity air streams.   

Introduction  

The atomization of liquid jets with high velocity gas streams is an important process in many 
technical applications. The liquid jet emanates from the central orifice with relatively lower speed 
compared to the co-flowing gas. In this process, the surface of the liquid phase becomes unstable, 
and then waves formed on the liquid surface, are amplified, and shed ligaments that rapidly collapse 
to form drops. 

 
Fig. 1 Schematic of the air-blast atomization 

Owing to the complexity of the physical phenomena involved in the process, the physical 
mechanisms are still not well understood. The study of liquid atomization in the high velocity gas 
flow is pursued usually by experiments. 

As well, some researchers tried to present theoretical approaches for the problem of the liquid 
jet breakup in the high velocity regime. Aerodynamic effect is the most developed theory of the 
atomization. The growth of disturbances, generating either within the atomizer or due to 
aerodynamic interaction with the surrounding gas, is mainly responsible for the formation of 
ligaments which ultimately breaks up to produce smaller, more stable liquid globes. 

A linear stability analysis is presented for a liquid jet that includes the effects of the 
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surrounding gas, surface tension and the liquid viscosity on the wave growth process. Rayleigh [1] 
conducted the classical linear stability analysis of the inviscid liquid jet, and found that 
axisymmetric disturbances are the dominant instability mode that leads to the breakup. Levich [2] 
considered the case of viscosity, and proposed that atomization is due to aerodynamic interaction 
between the liquid and the gas leading to unstable wave growth on the liquid jet surface. Reitz and 
Bracco[3] presented a unified first-order linear steady theory to analyze  the breakup of the liquid 
jet, and to predict the spray angle. They assumed that the most unstable wave conducts the breakup 
process, and then conducted a detailed experimental investigation where spray angle was measured 
for different operating conditions. Lin[4] developed the linear stability analysis of a viscous liquid jet 
with respect to spatially growing disturbances. Li[5] derived that a viscous liquid jet in an inviscid 
gas medium with three-dimensional disturbances by linear stability analysis. And it was found that 
the most unstable wave which has the most unstable growth rate conducted the breakup process. 

Owing to the complexity of the dispersion equation, the numerical solution have been taken to 
analyze the principle of the liquid jet breakup. However, the numerical solution fails to tell the role 
of the different physical parameters in the process. In contrast, the present explicit solution is 
expressed as functions of gas velocity, liquid velocity and other physical characteristics. This paper 
just focuses on this problem and proposed an approach to derive the explicit solution on the small 
viscosity liquid jet in high velocity air stream. 

Linear stability analysis  

A viscous incompressible liquid jet with a radius 0r , density lρ , surface tension σ , 

viscosity µ and uniform velocity lu , moving through an inviscid gas of destiny gρ and uniform 

velocity gu , is considered, as depicted in Fig.2. Note that g lu u , a relative velocity gu , defined as 
g

g lu u u= −  is applied. The polar coordinate system, moving with the jet, is fixed at the centerline 

of the jet at the orifice. 
 

 
Fig. 2 Schematic of a spectrum of disturbances on the jet surface 

The present stability analysis for a liquid jet, which includes the effects of the surrounding gas 
and liquid viscosity, is formulated from the Equations. The governing equations of the motion of the 
liquid and gas phases are the conservation of mass and momentum, which can be expressed as 
follows  
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where the subscript ,i l g=  denotes the liquid phase and the gas phase，respectively, 
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The solutions of Eq.(1) have to satisfy dynamic boundary conditions  
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The dispersion is derived eventually as follows   
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where ,n nI K are, respectively, the modified Bessel functions of the first and second kind. 

ν µ ρ= ,σ is the liquid surface tension and the prime indicates differentiation. Eq.(6) relates the 

wave growth rateω to its wave number k ,and l is defined by  
2 2l k ω

ν
= +       (7) 

The explicit solutions 

As the parameter l is still a function ofω , the solution is complicated. But it need to simplify 
the Eq.(6) to get the explicit solution, which is concise to understand how the key parameters 
influence the breakup process. 

When x → ∞ , Bessel functions can be approximated by  
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Here, 0x kr= , as the disturbance wavelength is quite small, the wavenumber is large enough, 

that is to say, 0 1kr ≥ , Then, Eq.(8) becomes 
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And substituting the Bessel functions in Eq.(6) by Eq.(9) yields the result 
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Considering the high velocity of the gas, the wavelength is very small, namely:

 2 2

0 01, , 1kr l k lrω
ν

= +    

Eq.(10) reduces to 

( )23 2 2 2 2
2 2

2 2 2 2 2 2

2
22 1

g
g

l l

k ukl k l k l kk
k l l k l k

ρσ
ω ν ω

ρ ρ
− − + − = − + + + + 

    (11) 

Note this paper mainly focuses on the jets with small viscosity, Eq.(7) can be replaced by  
2l ω

ν
≈      (12) 

Then, the explicit solution can be obtained as 
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In order to confirm the validity of explicit solution Eq.(13), direct comparison with the 
previous accurate, numerical solution of Li[5] in the cases of small viscosity is displayed in Fig. 3.  

 
Fig. 3. Numerical solutions curves at viscosity 
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It should be noted the two dispersion curves are agreed well in the large and small 
wavenumber region, while in the regime of the peaks, the explicit solution are larger than the 
numerical ones to a small extent. To better understand the small distinctions, the relative error, i.e. 
the ratio of the absolute differences to the accurate numerical solution, in the wavenumber 
corresponding to the large growth rate is illustrated in Fig. 4.  

1089



 

 

 
Fig. 4 The relative error diagram  

Obviously, the relative error is so small, less than 10% that can be neglected rationally. As a 
whole, the explicit solution is a good approximation to the numerical ones and can be used to 
describe the breakup mechanism of small viscous liquid jets. 

Conclusions 

Owing to the complexity of the dispersion equation, the numerical solution has been taken to 
analyze the principle of the liquid jet breakup. However, the numerical solution fails to tell the role 
of the different physical parameters in the process. In contrast, the present explicit solution is 
expressed as functions of gas velocity, liquid velocity and other physical characteristics. This paper 
proposes an approach to get the explicit solution on the small viscosity liquid jet in high velocity air 
stream .Agreement between the present explicit solutions and numerical solutions is obtained. 
Results verify the reliability of the present approach, the accuracy decreases when the liquid 
viscosity increases. 
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