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Abstract. The infinite-time ruin probability of a discrete-time risk model with dependent claims and 
heavy-tailed innovations is investigated in this paper. The claims are assumed to follow a one-sided 
linear process with independent and identically distributed (i.i.d.) innovations. Stochastic discount 
factors, which are independent of the innovations, and constant premium rate are taken into account. 
As a result, we establish an asymptotic estimate for the infinite-time ruin probability. 

Introduction 
Consider a discrete-time risk model as follows: 

.1,, 1
10 ≥−+== −

− nXcUUxU nnnn θ      (1.1) 
x> 0 stands for the initial wealth of an insurer, the constant c > 0 stands for the premium rate and the 
nonnegative random variable (r.v.) nX  stands for the total claim amount within period n. The 
investment of the surplus at time n− 1 causes the nonnegative and stochastic discount factor nθ  from 
time n to time n− 1. Thus, nU  is interpreted as the surplus of the insurer at time n. In the terminology 
of Norberg[1], we call { } 1≥nnX  insurance risks and call { } 1≥nnθ  financial risks. 

Now we can define the infinite-time ruin probability by 
( ) { }.|0min 01 xUUx mm =<Ρ=Ψ ∞<≤     (1.2)  

Many papers discussed the asymptotic behavior of ( )xΨ  under the assumption that { } 1≥nnX and 
{ } 1≥nnθ are two independent sequences of i.i.d. random variables (r.v.s) ([2] and [3], among many 
others). With the increasing complexity of insurance and reinsurance products, the assumption of 
independence among { } 1≥nnX is not enough to depict the real circumstances. Thus, the models of 
dependent insurance risks are attracting more and more attentions (for examples, [4] ,[5], [6] and [7]). 

In the present paper, we suppose that { } 1≥nnX and { } 1≥nnθ are two independent sequences and 
{ } 1≥nnθ is a i.i.d. sequence. To depict the dependence structure of the claims, we use the following 
one-sided linear process to describe { } 1≥nnX . Let 

,1,01
≥+= ∑ = − nX n

n

j jjnn εϕεϕ      (1.3)                

where { } 0≥nnϕ and 0ε are nonnegative constants with 00 >ϕ , { } 1≥nnε  is a sequence of i.i.d. and 
nonnegative r.v.s with common distribution F. Assume that { } 1≥nnε , the innovations of { } 1≥nnX , is 
independent of { } 1≥nnθ . Please see [5] and [8] for more examples of linear processes. We obtain an 
asymptotic estimate for Ψ(x) when the distribution F belongs to the intersection of the dominated 
variation class ( D ) and the long-tailed class ( L ). 
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Notations and main result 
C represents a positive constant without relation to x and may vary from place to place and all limit 
relations are for x ∞→  unless stated otherwise. For two positive functions )(⋅a and ),(⋅b we write 

)()( xbxa fp  if 0 < inflim a(x)/b(x) suplim≤ a(x)/b(x) < ∞ .  
By convection, an empty sum is 0 and an empty product is 1. In order to facilitate subsequent 

expression, we denote 
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A distribution F on R has right tail function .F  F belongs to the dominated variation class ( D ) if  
.10suplim )(

)( <<∞< yanyforxF
xyF  

F  belongs to the long-tailed class ( L ) if  
.01lim )(

)( >=+ yanyforxF
yxF  

Besides that, the upper Matuszewska index +
FJ and lower Matuszewska index −

FJ (see[9],Ch 2.1.) are 
used. It is well known that ∞<+

FJ  if F D∈ . Now, we are ready to state the main result. 
Theorem 2.1. Let { } 1≥nnX , { } 1≥nnθ be mutually independent,{ } 1≥nnX be a one-sided linear process 

introduced in (1.3), and{ } 1≥nnθ be i.i.d. and nonnegative. If  the common distribution function F of the 

innovations { }
1≥jjε , belongs to LD ∩ , ∞<≥ nn ϕ0sup , ∞<Ε∑∞

=1 1i
piθ for some 1≤<+ pJF  and 
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i  for some ,0 21 ppJJp FF <<≤<< +−   then it holds that 
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x

ε
     (2.1)  

Proof of the main result 

Some lemmas 
By Proposition 2.2.1 in [9], for a distribution F D∈ , it holds that 

 anyforxFox p ))((=− .+> FJp      (3.1)                
From Lemma 3.2 in [10], Lemma 3 in [6] and Lemma 4.1.2 in [3], we have  three lemmas. 

Lemma 3.1. Let X and Y be two independent and nonnegative random variables, where X is 
distributed by F. If F D∈ , then for any fixedδ>0 and ,+> FJp there exists a positive constant C 
without relation to δ and Y such that for all large x, 

 [ ] .1)()|( ][ δδδ <
− +≤>Ρ Y

ppYxFCYxXY         

Lemma 3.2. Let X and Y be two independent and nonnegative random variables, where X is 
distributed by F. If F D∈ , then for any fixedδ>0 and ,0 21 ∞<<≤<< +− pJJp FF there exists a 
positive constant C without relation to δ and Y such that for all large x, 

[ ] .)()|( 2211 pppp YYxFCYxXY −− +≤>Ρ δδδ  
 
Lemma 3.3. Let X and Y be two independent and nonnegative random variables, where X is 

distributed by F and Y is nondegenerate at 0. If F LD ∩∈ and ∞<pEY for some ,+> FJp then the 
distribution of XY belongs to LD ∩ and ).()( xFxXY fp>Ρ  

The following lemma will play crucial role in the proof of Theorem 2.1. 
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Lemma 3.4. Under the conditions of Theorem 2.1, for any 00 ≥c , it holds that  
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Proof. Under the conditions of  Theorem 2.1 and by Cr inequality, we can get 
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Firstly, we deal with the upper bound. For any fixed 0 < L < ∞  and k,, we can obtain  
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(3.5) 
By Lemma 3.3 and (3.4),  the  distribution of  ∞,jjWε  belongs to LD ∩  and  

{ } ).(, xFWP jj fp∞ε       (3.6) 
 

Then, by Chebyshev’s inequality and (3.1), we can get 
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(3.7) 
By Lemma 3.1, we can obtain that for all large x and any fixed k, 
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Then, by (3.4), there exists L* such that for any fixed L ≥ L*, 
)).((2 xFoI ≤        (3.8) 

Combining (3.5), (3.7) and (3.8), we can get 
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where we used (3.6) in the last step. 
Secondly, we deal with the lower bound. For any fixed ∞<< D0  and k, we have 
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(3.9) 
Because the distribution of  ∞,jjWε  belongs to LD ∩ , we can get 

 { } .))1(1(
1 ,1 ∑ = ∞ >−≥
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j jj xWPoL ε      (3.10) 

By Lemma 3.1, we can obtain that for all large x,   
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Then, by (3.4), there exists D* such that for any fixed D ≥  D*, 
 )).((2 xFoL ≤       (3.11) 

By Lemma 3.1 and (3.4), we can get 
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Hence, combining (3.9)-(3.12), we obtain 
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By Lemma 3.2 and condition, there exists k* such that for k ≥ k* and any ,0 21 ppJJp FF <<≤<< +−  
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Thus, we can derive 
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where we used (3.6) in the last step. 
 
Proof of Theorem 2.1 
Proof. From (1.1), we get that for n ≥  1, 
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(3.13) 
Substituting (3.13), (1.3) into (1.2) and rewriting the expression, we can derive 
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(3.14) 
It is clear that 
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Then, by Lemma 3.4, we can get (2.1). 
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