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Abstract. The infinite-time ruin probability of a discrete-time risk model with dependent claims and
heavy-tailed innovations is investigated in this paper. The claims are assumed to follow a one-sided
linear process with independent and identically distributed (i.i.d.) innovations. Stochastic discount
factors, which are independent of the innovations, and constant premium rate are taken into account.
As aresult, we establish an asymptotic estimate for the infinite-time ruin probability.

Introduction
Consider a discrete-time risk model as follows:

U,=xU, =U_ _g; *+c- X,,n31 (1.1)
x> 0 stands for the initial wealth of an insurer, the constant ¢ > 0 stands for the premium rate and the
nonnegative random variable (r.v.) X, stands for the total claim amount within period n. The
investment of the surplus at time n- 1 causes the nonnegative and stochastic discount factor g, from
timentotimen- 1. Thus, U, isinterpreted asthe surplus of the insurer at time n. In the terminology
of Norberg[1], wecall {X,} ., insurancerisks and call {g, } ., financial risks.

Now we can define the infinite-time ruin probability by
Y (x)=R{min,, ., U_<0|U, =x}. (1.2)
Many papers discussed the asymptotic behavior of Y (x) under the assumption that {X,} . and
{a,}..,are two independent sequences of i.i.d. random variables (r.v.s) ([2] and [3], anong many

others). With the increasing complexity of insurance and reinsurance products, the assumption of
independence among {Xn}ns ,Is not enough to depict the real circumstances. Thus, the models of

dependent insurance risks are attracting more and more attentions (for examples, [4] ,[5], [6] and [7]).
In the present paper, we suppose that {X } .. and {q,} ., are two independent sequences and

{qn}nslis ai.i.d. sequence. To depict the dependence structure of the claims, we use the following
one-sided linear process to describe {X, } ., . Let

n3l

n3l*

Xn= é.r;:lj n-€j +] .€,N3 1, (13
where {j .} ., and e, are nonnegative constants with j , >0, {e,}
nonnegative r.v.s with common distribution F. Assume that {e,} ., the innovations of {X,} .., is
independent of {qn}nsl. Please see [5] and [8] for more examples of linear processes. We obtain an

asymptotic estimate for W(x) when the distribution F belongs to the intersection of the dominated
variation class ( D) and the long-tailed class (L ).

1 1S @ sequence of i.i.d. and

© 2016. The authors - Published by Atlantis Press 66



Notations and main result
C represents a positive constant without relation to x and may vary from place to place and al limit
relations are for x ® ¥ unless stated otherwise. For two positive functionsa(?) andb(’), we write
a(x) fp b(x) if 0 <liminf a(x)/b(x) £ limsup a(X)/b(x) < ¥ .

By convection, an empty sum is O and an empty product is 1. In order to facilitate subsequent
expression, we denote

o ¥

Uom = O, A 1ENEMEY;Z, =8 " dy;

~ y
W, :O?é:qu,il i-j!1£ J<¥;W,, = é. Ol ;-
i=1

A distribution F on R has right tail function F. F belongs to the dominated variation class (D) if
limsup % <¥ forany 0<y<l1.
F belongsto the long-tailed class (L) if

lim F(x+y)

F()

=1 forany y>0.

Besides that, the upper Matuszewska index J; and lower Matuszewska index J- (see[9],Ch 2.1.) are
used. It iswell knownthat J: <¥ if FI D.Now, we are ready to state the main result.

Theorem 2.1. Let {X,} .., {q,} ., be mutually independent,{X,} ., be a one-sided linear process
introduced in (1.3), and{qn} bei.i.d. and nonnegative. If the common distribution function F of the

belongs to DCL, sup,.,j, <¥, é‘i:qupi <¥ for some J! <p£1 and

n3l
innovations {ej}.s :

j?1
o ¥

a j:1EWJ,'§4 <¥,i=12 forsome O0< p,<J. £J; < p,<p, thenit holdsthat
Y (¥)

aT.ReW,, > ]~

|im| =0. (2.1)

Proof of the main result
Some lemmas A
By Proposition 2.2.1 in [9], for adistribution FI D, it holds that
x P =o(F(x)) forany p>J;. (3.1)
FromLemma3.2in[10], Lemma3in[6] and Lemma4.1.2 in [3], we have three lemmas.

Lemma3.1. Let X and Y be two independent and nonnegative random variables, where X is
distributed by F. If FI D, then for any fixed 8 >0 and p>J;, there exists a positive constant C
without relationto 6 and Y such that for al large x,

RIXY >dx|Y) £ CE(X[d Y +1y | -

Lemma3.2. Let X and Y be two independent and nonnegative random variables, where X is
distributed by F. If FI D, then for any fixed § >0 and 0< p, <J; £ J; < p, <¥, there exists a
positive constant C without relationto & and Y such that for al large X,

RIXY >dx|Y) £CF(X)[d PYP +d Py P].

Lemma3.3. Let X and Y be two independent and nonnegative random variables, where X is
distributed by F and Y is nondegenerate at 0. If FI DC LandEY® <¥ for some p> J;,then the

distribution of XY belongstoD C Land R(XY > X) fp F(x).
The following lemmawill play crucia role in the proof of Theorem 2.1.
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Lemma 3.4. Under the conditions of Theorem 2.1, for anyc, 2 0, it holds that

"m}R{é b o X}- =0. (32

&*,ReW,, >x

Proof. Under the conditions of Theorem 2.1 and by Cr inequality, we can get

ezp =48 o) Secla ) B0 )<, 33
p . \p—go ¥ PU -
EW/y £ (Supnsol n) Egaizlql,i) g<¥, ]2 0. (3.9

Firstly, we deal with the upper bound. For any fixed 0 <L < ¥ and k,, we can obtain
¥
P{é BWy - 6 Z, > x}

]

£ P{a T=oe W, > x}

£ P{UT:O{ejo ¥ 7 X L}}+ P{é T:oein PR | Ij(=1{ejo ¥ £ Xx- L}}
=1, +1,.
(35)
By Lemma3.3 and (3.4), the distribution of e,W,, belongsto DC L and

Plew,, } fo F(0). (3.6)

Then, by Chebyshev’s inequality and (3.1), we can get
LE£Q T=1 P{ejo,¥ > X- L}"' P{eoWo,¥ > X- L}

X} eg EW,%
(x- L)°

£E@+o®) ", Plew,, >x}+o(F(x).

£@+o)d Plew,, >

(3.7
By Lemma 3.1, we can obtain that for all large x and any fixed K,
¥

i K
LEPIA Wy >x 1,
T

j:O ]

1{ejo ¥ £ X- L}’ U:(:li eiVVi,¥ > Egg

o k 1 X o ¥ Ul
EaizlP%eiWi% >E’a j:O]jliejo% > L%

. —
£ é’ i=1CF(X)E[kp\Ni'§ 1[5T=0,ilieiwi,¥ >} +1{5T=o,ilieiwi,¥ >'-}] '
Then, by (3.4), there exists L* such that for any fixed L3 L*,
|, £0(F(X)). (3.8)
Combining (3.5), (3.7) and (3.8), we can get
¥
Pia oBW - 6 Z, > x}

£@+o®)d ", Plew,, >x}+o(F (x)

£@ro@)A ", Plew, >,

where we used (3.6) in the last step.
Secondly, we deal with the lower bound. For any fixed 0< D <¥ and k, we have
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o ¥
P{a j:Oejo,¥ - CZy > x}
o k
3 P{a j:1ejo’¥ - CZy > x}
3 F>{Uj:1{ejwj,¥ > x+COZ¥}}

o k o k
= 4" Plew,, >x+c,z,,z,£D}- §

=1

é. P{eiVVi,¥ >x,eW,y > X}

1£jEk, jLi

o k o k
a jzlP{ejo]¥ >x+c0D}- aj:lP{ejo]¥ >x+c¢,D,Z, > D}
o k o
- aizl a P{eivvi,¥ >X’ejo,¥ >X}
1EjEK, jLi
=L-L- L,

(3.9
Because the distribution of e,W,, belongsto D C L, we can get
k

L3 (- oA",Plew,, >x . (3.10)

By Lemma 3.1, we can obtain that for al large x,
k k —_
Lz £ é. j:lp{ejo,¥ > X, Z¥ > D}£ é. j:1CF(X)Eij',)¥1{z¥>D} +1{z¥ >D}] .

Then, by (3.4), there exists D* such that for any fixed D 3 D*,

L, £ o(F(X)). (3.11)
By Lemma 3.1 and (3.4), we can get
LEAY, 8 CFOOEWS L o +lew - € OF (). (3.12)
1£jEK, j1i

Hence, combining (3.9)-(3.12), we obtain
¥
Pla BW - G Z, > x}

* (1- o)A ", Plew,, >x}- oF (%)

¥

=(1- o(1))(6°1 Y- D )P{eij¥ > x}- o(F (X)) -
By Lemma 3.2 and condition, there exists k* such that for k3 k* andany 0< p, <J: £J. <p,<p,

¥ e ¥ —
2", . Plew. > £CF0A ", By +ws £ oF (x)

Thus, we can derive h
P{é *j‘zoejwj v CZy > x}
* (1- o)& ", Ple W, >x}- oF (%)
2 (1- o)& ", Plew, >x |

where we used (3.6) in the last step.

Proof of Theorem 2.1
Proof. From (1.1), we get that forn 3 1,

U n = qur} + é. in:l[qi;rll,n (C_ Xi )] '
(3.13)
Substituting (3.13), (1.3) into (1.2) and rewriting the expression, we can derive
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Y (X) = P{min0£m<¥ U Qim < 0}
= P{max0£m<¥ a in;l[ql,i (X, - 0> X}

= P{max0£m<¥ (é T:Oe w - ch)> x} .

(3.14)
It is clear that

¥ ¥
P{é BW,, -z, > X}EY(X) £ P{é ew, > x} _
Then, by Lemma 3.4, we can get (2.1).
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