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Abstract. Two different phases of Ga3Zr with tetragonal (D022) and cubic (Ll2) structures under 
high pressure are investigated by using density functional theory (DFT) calculations. The elastic 
constants (Cij) and mechanical moduli, including bulk modulus (B) and shear modulus (G), are 
calculated under various pressures. When pressure goes up, the increasing tendency of Cij, B and G 
are confirmed. On the basis of Pugh’s criterion, Ll2-Ga3Zr has better ductility comparing with 
D022-Ga3Zr under various pressures in the range of 0~60 GPa. The brittleness of D022-Ga3Zr 
depends on the pressure, it will become ductile when the pressure rise up higher than ~35 GPa. For 
the both phases, Debye temperature (ΘD) is also calculated under high pressures. For the both 
phases, Debye temperature increases with pressure rising up. Under pressures ranging from 0 GPa 
to 60 GPa, the ΘD values of Ll2-Ga3Zr are lower than the ones of D022-Ga3Zr.  

Introduction 
The properties of materials are usually related to their circumstances. Besides the factor of 
temperature, pressure also significant influences the properties of materials. In recent years, by 
using density functional theory (DFT) calculation method, the theoretical studies about materials' 
properties under high pressure have been commonly conducted. For example, the elastic properties 
of MgSiO3 under lower mantle conditions were investigated by first principle calculations [1], 
which is on the basis of DFT. The pressure-induced effects on the elastic and mechanical properties 
of TiC and TiN were also studied by using DFT calculations [2]. 

The DFT calculations are also performed to investigate Ga-Zr intermetallics. For Ga3Zr and 
Ga2Zr, the crystallochemical affinity and optical functions[3], and their band structure, density of 
states, and crystal chemistry[4] were studied by using all-electron full potential linearized 
augmented plane wave (FP-LAPW) method. Furthermore, the phase equilibriums of Ga–Zr system 
were investigated by combining experimental investigation and thermodynamic modeling, the 
formation enthalpies phases of Ga-Zr intermetallics (including Ga3Zr, Ga2Zr, etc.) were computed 
via first-principles calculations, and the calculated phase diagram and thermodynamic properties 
agreed well with the available experimental data [5].  

However, according to our knowledge, the pressure's influence on the elastic and mechanical 
properties of Ga3Zr is rarely reported. Under normal temperature and pressure, the compound 
Ga3Zr exhibit tetragonal structure (D022, I4/mmm) [5, 6], and the cubic structure (L12, 3Pm m ) is a 
metastable phase. It is natural to question that, the elastic and mechanical properties of Ga3Zr may 
vastly change under high pressure. The present work is conducted to clarify the dependence of 
elastic and mechanical properties of D022- and L12-Ga3Zr under various pressures from 0 GPa to 60 
GPa. 
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Computational methodology 
The DFT calculations in present work were conducted using CASTEP package [7, 8], and 
plane-wave ultrasoft pseudopotentials [9, 10] were employed. The valence electrons considered in 
the pseudopotentials were Ga 3d104s24p1, Zr 4s24p64d25s2, respectively. The exchange correlation 
(XC) energy was treated with two different forms: generalized gradient approximation (GGA) 
functionals of PBE [11], and local density approximation (LDA) functional of CAPZ [12, 13]. The 
convergence threshold in the self consistent field (SCF) procedure was set as 5.0×10−7 eV/atom. In 
the minimization with Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, the convergence 
tolerances for the energy, force, stress and displacement were set as 5.0×10−6 eV/atom, 0.01 eV/Å, 
0.02 GPa and 5×10−4 Å, respectively. After the validation of convergence tests, the cutoff energy on 
the plane wave basis was set as 350 eV, the k-points grids were set as 20×12×20, 40×40×22, 
24×24×24 and 24×24×10 for bulk α-Ga (A11, Cmca)[14], hcp-Zr (A3, P63/mmc)[15], L12- and 
D022-Ga3Zr respectively. The above k-points settings make the separation of the reciprocal space 
around 0.01Å-1.  

After fully optimizations, the calculated equilibrium lattice constants and previous experimental 
data are listed in Table 1, the elastic constants (Cij) and formation energy ΔEf (Ga3Zr) are listed in 
Table 2. For the both XC potentials, the calculated lattice constants agree well with the available 
experimental data, their deviations are in the ranges of –1.4% ~ 5.1% and –3.8% ~ 2.6% for 
GGA-PBE and LDA-CAPZ potentials, respectively. For D022-Ga3Zr, our calculated lattice 
parameters with GGA-PBE potential are very close to previous results (a = 3.9875 Å, c = 8.7961 Å) 
in other DFT literature [5]. Besides that, our calculated formation energy ΔEf(D022-Ga3Zr) is also 
accordance with the previous calculation [5]. Therefore, the calculation parameters adopted in our 
work are validated, and the calculations accuracy is adequate. 

Moreover, the “over-binding effect” of LDA potential reported in other calculations [16-20] is 
also shown in our calculations, the lattice constants calculated with LDA-CAPZ potential is slightly 
smaller that the results of GGA-PBE potential.  

Table 1  Crystallographic data, lattice constants of bulk Ga, Zr and Ga3Zr. 

Phase  Space 
group (#) 

Pearson  
symbol 

Strukturbericht  
designation 

Lattice parameters (Å) 
Present Calc. Expt. 

α-Ga Cmca  
(64) 

oC8 A11 a=4.5776, 
b=7.7406,  
c=4.5727 a 

a=4.519,b=7.658, 
c=4.526[14] 

   a=4.4177, 
b=7.4829,  
c=4.4271 b 

 

hcp-Zr P63/mmc  
(194) 

hP2 A3 a=3.2298, 
c=5.1711 a 

a=3.2331,c=5.1480[15] 

   a=3.1468, 
c=5.0793 b 

 

D022-Ga3Zr  I4/mmm  
(139) 

tI8 D022 a=3.9160, 
c=9.1713 a 

a=3.963,c=8.730[5] 

   a=3.8220, 
c=8.9522 b 

a=3.971,c=8.729[6]  

L12-Ga3Zr 3Pm m  
(221) 

cP4 L12 a=4.1245 a  
   a=4.0218 b  

Note: Superscripts "a" and "b" denote the results calculated with exchange correlation functionals of 
GGA-PBE and LDA-CAPZ, respectively. 
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Table 2  Elastic constants (Cij) and formation energy (ΔE f) of L12- and D022-Ga3Zr. 

Phases Data source Elastic properties (GPa) ΔE f (Ga3Zr) 
(kJ/mol) C11 C12 C13 C33 C44 C66 B0 

D022- 
Ga3Zr  

Present 
calculation 
with  
GGA-PBE 

181.16 85.14 47.26 180.68 75.79 113.76 99.89 –46.304 

 

Present 
calculation 
with  
LDA-CAPZ 

219.37 105.39 59.36 215.49 88.98 135.32 121.96 –52.606 

 

Other 
calculation 
with  
GGA-PBE 
in Ref. [5] 

-- -- -- -- -- -- -- –53.727 a 

L12- 
Ga3Zr 

Present 
calculation 
with  
GGA-PBE 

133.30 78.06 -- -- 42.06 -- 96.47 –43.923 

 

Present 
calculation 
with  
LDA-CAPZ 

149.19 95.33 -- -- 50.32 -- 113.28 –50.433 

Note: a An approximate value of first-principle calculation with GGA-PBE potential under 0 GPa 
in Ref. [5]. 

Results and Discussion 
Elastic Constants. The elastic constants of solids can be used to calculate their mechanical and 
thermodynamic properties. Commonly, the single crystal’s elastic constants Cij can be obtained by 
calculating the total energy as a function of appropriate strains [21-23]. To calculate the elastic 
constants, a serial of deformed cells (strain) are introduced and optimized to calculate the tensor of 
elastic constants. The elastic strain energy U of a deformed crystal cell is given as [24]: 

0

1
2

∆
= = ∑ ij i j

ij

EU C e e
V                                                             (1) 

where ΔE is the energy difference of deformed cell relative to the unstrained cell, V0 is the volume 
of the equilibrium cell without any deformation, Cijs are the elastic constants, ei and ej are strain. 

For the L12 structure, there are three independent elastic constants: C11=C22=C33, C12=C13=C23, 
C44=C55=C66; for the D022 structure, there are six independent constants: C11=C22, C12, C13=C23, 
C33, C44=C55, C66. The obtained monocrystal quantities, such as these elastic constants, can not 
accurately stand for the properties of polycrystalline materials, so they should be further calculated 
and rectified. The polycrystalline mechanical quantities, such as bulk modulus (B), shear modulus 
(G), Young’s modulus (E), Poisson’s ratio (ν), can be calculated from these independent elastic 
constants. 

There are three different algorithms corresponding to different bound to calculate these 
polycrystalline mechanical quantities: the Voigt bound is obtained by the average polycrystalline 
modules based on an assumption of uniform strain throughout a polycrystal, and it is the upper limit 
of the actual effective modules; while the Reuss bound is obtained by assuming a uniform stress, 
and it is the lower limit of the actual effective modules; the arithmetic average of Voigt and Reuss 
bounds is termed as the Voigt-Reuss-Hill approximation. The formula for calculating these 
mechanical quantities can be given as follows: (1) for the cubic L12 structures, BV = BR = 
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(C11+2C12)/3, GV = (C11-C12+3C44)/5, GR = 5(C11-C12)C44/[4C44+3(C11-C12)][25]; (2) for the 
tetragonal D022 structures, BV = (1/9)[2(C11+C12)+C33+4C13], BR = C2/M, GV = 
(1/30)(M+3C11-3C12+12C44+6C66), GR = 15{(18BV/C2)+[6/(C11-C12)]+(6/C44)+(3/C66)}-1, M = 
C11+C12+2C33-4C13, C2 = (C11+C12)C33-2(C13)2[26]; and (3) for the Voigt-Reuss-Hill 
approximation, BH = (1/2)(BV + BR), GH = (1/2)(GV + GR), the subscript letter of V, R and H denote 
Voigt, Reuss bound and Hill approximation, respectively. The BH and GH are adopted in this paper 
to calculate Young’s modulus E and Poisson’s ratio ν by the following formulas: E = 9BG/(3B+G), ν 
= (3B-2G)/[2(3B+G)] [27]. 

The elastic constants of D022- and L12-Ga3Zr under 0 Gpa are calculated with GGA-PBE and 
LDA-CAPZ functionals, the results are presented in Table 2. Due to the data of Ga3Zr are rarely 
reported in other literatures, the comparison of elastic constants between our results and previous 
data is unavailable. However, the bulk modulus of Al3Zr at 0 GPa was empirically predicted as 
B0=95.4 GPa[28], and the elastic constants of L12-Al3Zr were calculated as C11=184.8 GPa, 
C12=59.9 GPa, C44=72.0 GPa, B0= 101.5GPa with GGA-PW91 potential[29]. Comparing with these 
elastic and mechanical data of Al3Zr, our calculation results of Ga3Zr are reasonable. 

Moreover, the elastic constants under high pressures (5~60 GPa) are also calculated with 
GGA-PBE and LDA-CAPZ potentials, and the results are presented in Table 3. It is confirmed that 
the elastic constants and mechanical moduli increase with the pressure increasing, which indicates 
the materials will be stiffer and more difficult to be compressed under higher pressure.  

Table 3  Elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E (all in GPa), 
Poisson’s ratio ν and Elastic anisotropy index AU of D022- and L12-Ga3Zr under various pressures 

Phases XC Pressure 
(GPa) C11 C12 C13 C33 C44 C66 B G E ν B/G 

D022- GGA 0 181.16 85.14 47.26 180.68 75.79 113.76 99.89  74.47  178.93  0.20  1.34  
Ga3Zr  10 243.22 125.93 74.85 249.60 99.47 150.51 142.64  96.24  235.72  0.22  1.48  
  20 291.45 164.27 104.49 307.84 120.03 182.46 181.60  112.60  279.94  0.24  1.61  
  30 348.75 201.94 131.46 363.54 138.70 211.38 220.74  130.05  326.10  0.25  1.70  
  40 393.63 241.88 158.80 419.49 155.78 238.15 257.98  143.41  362.97  0.27  1.80  
  50 440.77 278.78 186.45 477.09 171.81 263.42 295.40  157.23  400.61  0.27  1.88  
  60 483.77 312.47 210.87 524.41 186.81 287.27 328.52  169.80  434.52  0.28  1.93  
 LDA 0 219.37 105.39 59.36 215.49 88.98 135.32 121.96  87.97  212.76  0.21  1.39  
  10 277.84 143.65 86.96 233.02 111.48 170.66 156.08  104.94  257.18  0.23  1.49  
  20 329.51 183.85 116.33 341.89 131.56 201.93 203.31  125.34  311.92  0.24  1.62  
  30 379.69 222.48 145.14 397.12 149.61 230.33 241.96  140.52  353.19  0.26  1.72  
  40 428.34 259.96 173.00 451.38 166.54 256.86 279.49  154.91  392.25  0.27  1.80  
  50 475.23 296.46 200.28 503.13 182.46 281.77 315.87  168.35  428.87  0.27  1.88  
  60 520.62 332.07 226.93 555.06 197.43 305.24 351.49  181.15  463.77  0.28  1.94  
L12- GGA 0 133.30 78.06 -- -- 42.06 -- 96.47  35.53  94.95  0.34  2.71  
Ga3Zr  10 174.39 118.48 -- -- 59.73 -- 137.12  44.04  119.34  0.35  3.11  
  20 224.87 152.03 -- -- 82.24 -- 176.31  59.31  159.99  0.35  2.97  
  30 282.63 182.98 -- -- 103.97 -- 216.20  77.39  207.42  0.34  2.79  
  40 330.22 214.98 -- -- 122.31 -- 253.39  90.42  242.42  0.34  2.80  
  50 365.04 247.41 -- -- 137.82 -- 286.62  97.93  263.76  0.35  2.93  
  60 409.99 280.78 -- -- 152.77 -- 323.85  108.16  291.99  0.35  2.99  
 LDA 0 149.19 95.33 -- -- 50.32 -- 113.28  39.15  105.33  0.35  2.89  
  10 197.38 135.00 -- -- 71.18 -- 155.79  51.12  138.23  0.35  3.05  
  20 255.69 168.39 -- -- 95.20 -- 197.49  69.62  186.89  0.34  2.84  
  30 313.31 200.50 -- -- 115.70 -- 238.10  86.72  231.99  0.34  2.75  
  40 356.32 234.42 -- -- 133.04 -- 275.05  97.26  261.01  0.34  2.83  
  50 394.90 268.83 -- -- 148.30 -- 310.85  105.21  283.64  0.35  2.95  
  60 435.20 303.04 -- -- 162.27 -- 347.09  113.17  306.24  0.35  3.07  
 

The hardness and brittleness of the compounds also have a relation to the ratio (B/G) between 
bulk modulus and shear modulus. According to Pugh’s criterion [30], the compound with larger B/G 
ratio (> ~1.75) usually is ductile, and with smaller B/G ratio (< ~1.75) usually is brittle. Our 
calculated B/G values of Ga3Zr are illustrated in Fig. 1.  
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From Table 3 and Fig. 1, one can find that, the ratio B/G of D022- and L12-Ga3Zr will become 
larger with pressure going up, it indicates that better ductility can be anticipated for the both 
structures of Ga3Zr under high pressures. However, for D022-Ga3Zr, the ratio of B/G constantly 
increases with the pressure going up. Meanwhile, for L12-Ga3Zr, a sharply increasing of B/G is 
followed by a decreasing in pressure range of 10~30 GPa, and then a gradual increasing from 30 
GPa to 60 GPa. 

Besides that, the B/G values of L12-Ga3Zr are larger than 1.75, while the values of D022-Ga3Zr 
are much lower, it can be interpreted that L12-Ga3Zr will exhibit better ductility than D022-Ga3Zr in 
the pressure range of 0~60 GPa.  

Furthermore, for D022-Ga3Zr, the B/G values is lower than 1.75 in the pressure range from 0 GPa 
to ~35 GPa, while larger than 1.75 in the range from ~35 GPa to 60 GPa. It suggests that 
D022-Ga3Zr will change from brittle to ductile when pressure is higher than ~35 GPa.  

 

 
 

Figure 1.  Raito between bulk modulus (B) and shear modulus (G) of D022- and L12-Ga3Zr under 
various pressures (the horizontal dash line denote the value of B/G = 1.75). 

Debye temperature. Debye temperature (ΘD) is a fundamental parameter for the materials’ 
thermodynamic properties, and it is correlated with many physical properties such as specific heat, 
elastic constants, melting temperature, etc. The experimental value of a solid usually can be 
calculated from the sound velocity [31]. In this paper, Debye temperatures of L12- and D022-Ga3Zr 
under zero and high pressures are estimated with the elastic constant data. ΘD can be ascertained 
from the averaged sound velocity by the following equation [31]:   

1
3

A 0
D m

3
4
  =   π   

N ρh n υ
k M

Θ                                                           (2) 

where h is the Planck’s constant, k is Boltzmann’s constant, NA is the Avogadro constant, n is the 
atoms number per molecule, M is the molecular weight, and ρ0 is the density, respectively. The 
average sound velocity υm can be calculated as follows: 
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where υl and υs are longitudinal and shear sound velocities, respectively. The Debye temperatures 
of L12- and D022-Ga3Zr are calculated from the aforementioned values of lattice parameters, bulk 
modulus and shear modulus, and the results are listed in Table 4. 
 

Table 4  Debye temperature ΘD (unit in K) of D022- and L12-Ga3Zr under various pressures 

Phases XC Pressure (GPa) 
0 10 20 30 40 50 60 

D022-Ga3Zr GGA-PBE 409.62 460.40 493.92 527.07 550.43 573.41 593.13 
 LDA-CAPZ 440.24 475.97 516.57 543.63 567.77 589.12 608.51 
L12-Ga3Zr GGA-PBE 287.48 316.21 362.75 410.38 440.45 455.93 476.72 
 LDA-CAPZ 298.34 337.02 389.11 430.64 453.38 469.19 484.55 
 

 
 

Figure 2.  Dependence of Debye temperature (ΘD) as function of pressure for D022- and 
L12-Ga3Zr. 

In Debye theory, ΘD is the temperature of a crystal's highest normal mode of vibration, i.e., the 
highest temperature that can be achieved due to a single normal vibration. One can find that the 
Debye temperatures of both structures will increase with the pressure increasing, which indicates 
that the normal vibration of both crystals will enhance when the pressure increases. The 
D022-Ga3Zr has higher ΘD than L12-Ga3Zr, and the gap of ΘD between the both phases constantly 
maintains as pressure increasing. 

Summary 
The elastic constants, mechanical moduli, Debye temperature of D022- and L12-Ga3Zr have been 
investigated with external pressure varying from 0 GPa to 60 GPa by performing DFT calculations. 
The results show that (1) elastic constants and mechanical moduli increase with pressure's going up; 
(2) the ductility of L12-Ga3Zr is larger than D022-Ga3Zr, and the ductility of the both phases will 
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roughly increase with pressure's increasing, and the transition of D022-Ga3Zr from brittle to ductile 
will take place at about 35 GPa; (3) the Debye temperature of the both phases will increase along 
with pressure going up, and D022-Ga3Zr has higher Debye temperature than L12-Ga3Zr. 
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