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Abstract. In many practical problems, it is sometimes necessary to evaluate the derivative of function 
whose values are given approximately.  Firstly, the problem of estimating the derivative of a function 
observed with error is studied. It  presents a proper regularization strategy and explain how to choose 
regularization parameter. Secondly,  the regularization strategy above to the numerical differentiation 
is applied and discussed in the implementation of the numerical method and the tests which it has  
performed in order to investigate the accuracy and stability of the numerical differentiation procedure. 
Finally, some numerical examples will further illustrate that this method is reasonable, effective and 
reasonable. 

Introduction 
In recent years, inverse problems in mathematical physics have been one of the fastest growing areas. 
However, inverse problems are closely linked to the ill-posed, and due to a great deal of difficulty to 
numerical solution. At the beginning of 1960s,  the regularization strategy is proposed by Tikhonov 
creatively[1].  From then on, Dinh Nho Hao studied the mollification method for ill-posed 
problems[2]. Y F Wang, W Q Liang, J T Zhao conducted a lot of research[3,4,5]. As it is known, the 
choice of the regularization parameter is a key matter for ensuring proper regularization. There are 
many problems that can be described by numerical differentiation in the natural science and 
engineering technology field. It is easy to imagine many different situations--- mostly involving 
ordinary and partial differential equations—related with the question of numerical differentiation of 
noisy (measured) data. So it is sometimes necessary to evaluate the derivative of function whose 
values are given approximately. How to get the numerical solution of these functions with noisy data 
has become a special course. In this paper, the operator with Gaussian kernel is studied and  its 
reasonable regularization parameters in an efficient manner is introduced. 

Therefore, a lot of numerical examples show that the process has good stability and high accuracy. 
The general method to solve the ill-posed problem is to approximate the solution of the original 
problem with a set of well-posed problems. How to establish an effective regularization method is an 
important part of the research on the problem of ill-posed problems in the field of inverse problem. J 
J Cao, Y F Wang and B F Wang[6,7] conducted a lot of research.  

Regularization Strategy 
Theorem 1: Let 1( )ng L Rα ∈  and ( ) 1

nR

g x dxα =∫ , 

(1) if ( )p nf L R∈ , where 1 p≤ < +∞ , then 
0

lim || || 0pg f fαα→
∗ − = ; 

(2) if ( )nf L R∞∈ , then 
0

lim( )( ) ( )g f x f xαα→
∗ = , where x is the continuous point of f . 

Proof: Set *g f fα α= , ( ) ( ) [ ( ) ( )] ( )
nR

f x f x f x y f x g y dyα α− = − −∫ . 
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By the generalized Minkowski inequality,  

1

1
[ ( ) ( )] ( ) [ ( ) ( ) ] ( )

n n n n

p p
p p

p
R R R R

f f f x y f x g y dy dx f x t f x dx g t dt
αα α

  − = − − ≤ − − 
  
∫ ∫ ∫ ∫ . 

 To every nt R∈ ,   

1

0
lim ( ) ( ) 0

n

p
p

R

f x t f x dx
α

α
→

 
− − = 

  
∫  

and  

1

( ) ( ) 2
n

p
p

p
R

f x t f x dx fα
 

− − ≤ 
  
∫ . 

By dominated convergence theorem,  

1
[ ( ) ( ) ] ( ) 0

n n

p p

R R

f x t f x dx g t dtα− − →∫ ∫ . 

When 0α → . (1)  has already proved. 
  Because ( )nf L R∈  and x  is a continuous point of f ,  then 

( ) ( ) ( ( ) ( )) ( ) ( ) ( ) ( )
n nR R

f x f x f x y f x g y dy f x t f x g t dtα α α− ≤ − − = − −∫ ∫ . 

To every nt R∈ ,  

0
lim ( ) ( ) 0f x t f x
α

α
→

− − =  

and    

( ) ( ) 2f x t f x fα− − ≤ . 

By dominated convergence theorem, 

( ) ( ) ( ) 0
nR

f x t f x g t dtα− − →∫ , when 0α → . 

(2)  has already proved. 
   By Theorem 1,  gα  is needed  to choose properly, then g f fα ∗ →  when 0α → . 

The Gaussian kernel ( )g tα  is defined by 2 21( ) exp( / )g t tα α
α π

= − ,  t R∈ , 

where 0α >  denotes a parameter. Then ( ) 1g t dtα

+∞

−∞
=∫   and the convolution  
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( )T f tα ( )( )g f tα= ∗ = ( ) ( )g t s f s dsα

+∞

−∞
−∫ ( ) ( )g s f t s dsα

+∞

−∞
= −∫ , t R∈  

exists and is an 2L -function for every 2( ) ( )f t L R∈ . Furthermore, by Young’s inequality,  

2 2 1 2 2
2|| || || || || || || || || || , ( )

L L L L L
T f g f g f f f L Rα α α= ∗ ≤ = ∀ ∈  is obtained. 

Therefore, the operator f g fα→ ∗  is uniformly bounded in 2 ( )L R  with respect toα . So regard 
( )T f tα  as regularization operator.  

However, in practical application, ( )f t  cannot be accurately given. The noisy (measured) function 
( )f tδ  which satisfied the error bound  is obtained: 

,|| ( ) ( ) || If t f tδ δ∞− ≤  

in the data interval [0,1].I =  
Theorem 2: ( Error estimation):  

| ( ) ( ) | | ( ) ( ) ( ) ( ) |
| ( ) ( ) | | ( ) ( ) |

T f t f t T f t T f t T f t f t
T f t T f t T f t f t C

α δ α δ α α

α δ α α δ α
− = − + −

≤ − + − ≤ +
 

where α  is a constant. So ( )T f tα δ  is used to compute the approximate derivative of the exact ( )f t . 
The original ill-posed problem of finding f  is replaced by new problem of finding T fα δ . The new 

problem is well-posed, and depends on a parameter 0δ > . 
For given T fα δ , regularization parameter α  is choosed by Morozov deviation principle or by 

GCV[8,9]. 
In the numerical computation, Newton method is used as follows: 
Step1: Set initial value 0α , then we compute 0 0( )f f α= , 0 0' '( )f f α= , 

where 2 2( ) || ||f T f fα δ δα δ= − − . 

Step2: Compute 0
1 0

0 '
f
f

α α= − , 1 1( )f f α= , 1 1' '( )f f α= . 

Step3: If 1α  satisfied  1η ε<  or 2η ε< , then 1α α= ; 
else go to step 4. 

Where 
1 0 1

1 0
1

1

| |; | |
| | ; | |

C

C

α α α
η α α α

α

− <
= − ≥

, C  is a control constant. 

Step4:  if 1 ' 0f = ,  then over, 
otherwise alternate 0 0 0( , , ')f fα  by 1 1 1( , , ')f fα , then go to Step1. 

Numerical Result 
In this section , the regularization strategy is applied above to the numerical differentiation, and 
discussed the implementation of the numerical method and the tests which it performed in order to 
investigate the accuracy and stability of the numerical differentiation procedure[10,11]. 

In the examples, the exact data function is denoted by ( )f t  and the noisy function ( )f tδ . ( )f tδ  is 
obtained by adding an random error or an high frequency disturbance error to ( )f t . 
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That is ( ) ( )(1 )i i if t f tδ δσ= + , where ; 0,1, 2 ; 1it ih i n nh= = = , and iσ  is a uniform random 
variable with values in [-1,1], such that 

0
max ( ) ( )i ii n

f t f tδ δ
≤ ≤

− ≤  or ( ) ( )(1 sin( ))i i if t f t tδ δ ω= + , 

 where ; 0,1,2 ; 1it ih i n nh= = = , and ω  is a perturbation frequency. 
 Example 1: The first example is rather oscillatory on [0,1]. We choose ( ) sin(10 )f t tπ= and the 

exact derivative / ( ) 10 cos(10 )f t tπ π= . In table1, we give the error between the exact derivative of  
( ) sin(10 )f t tπ=  and the solution obtained with the regularization strategy. In order to illustrate the 

numerical approximation to the derivative / ( )f x  denoted / ( )f xδ , 
1

2/ / 2
2,

1

1( ( ) ( ) )
n

h i i
i

error f t f t
n δ

=

= −∑  

is applied. 

Table 1.  This is the the error between the exact derivative and regularization derivative 

 error  

δ  100
,100

=
=

ω
n

 200
,100

=
=

ω
n

 100
,200

=
=

ω
n

 200
,200

=
=

ω
n

 
0.001 
0.010 
0.050 
0.100 

      0.49067 
      0.58587 
      1.70032 
      3.36879 

0.49201 
0.55242 
1.32859 
2.78627 

0.11878 
0.45855 
2.24404 
4.52232 

0.12708 
0.42768 
3.25952 
3.27416 

Example 2: The exact function ( ) ( , 2,3)f t normcdf t= ,  solve ( )xρ , such that ( ) ( )t dt f tρ
+∞

−∞
=∫ . 

The complete algorithm for the regularization strategy is as follows: 
 Step1: Provide the exact discrete data ( )if t  of ( )f t  by MATLAB. 
Step 2: Obtain the noisy function ( )if tδ  by adding a δ  high frequency disturbance error to ( )if t . 
Step 3: Compute the approximate solution ( )xδρ  of ( )xρ . 
Step 4: Compare ( )xδρ  with ( )xρ . 
In experience the exact ( )xρ and error function error  are given as follow: 

2
2

1 2( ) exp( ( 3) )
2 22 2

x tρ
π

= − −
×

, 2

1

1 ( ( ) ( ))
n

i i
i

error t t
n δρ ρ

=

= −∑ . 

Table 2.  This is the the error between the exact derivative and regularization derivative(ω =217) 

 error  (ω =217) 
δ =0.1 δ =0.01 δ =0.001 

regularization stratery 
bisection method 
interpolation 
spline 
extrapolation 
discrete regularization(α unknown) 
discrete regularization(α known) 

0.1231 
0.1428 
2.5203 
0.3270 
0.2025 
0.0143 
0.0133 

0.0123 
0.0143 
0.2520 
0.0327 
0.0202 
0.0022 
0.0021 

0.0012 
0.0014 
0.0252 
0.0033 
0.0020 
7.2694e-004 
7.2634e-004 
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Table3.  This is the the error between the exact derivative and regularization derivative(ω =100) 
    

Conclusions 

In many practical problems, it is sometimes necessary to evaluate the derivative of function whose 
values are given approximately.  Firstly, the problem of estimating the derivative of a function 
observed with error is studied. It  presents a proper regularization strategy and explain how to choose 
regularization parameter. Secondly,  the regularization strategy above to the numerical differentiation 
is applied and discussed in the implementation of the numerical method and the tests which it has  
performed in order to investigate the accuracy and stability of the numerical differentiation procedure. 
Finally,  some numerical examples will further illustrate that this method is reasonable, effective and 
reasonable[12]. 
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