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Abstract: In this research, a Navier-Stokes equations based Newtonian fluid model was employed 
to conduct mathematical modeling on the polymer fluids with low shear rate under pressure-drag 
flow. Then, a weight function for the equations of the continuity and motion of the fluids is obtained 
by using an interpolation function. Besides, the authors constructed a general FEM equation based 
on a rheological model by setting the data, and the coordinates of grid nodes, as well as relevant 
boundary conditions. The obtained values revealed that the flow rate under compound conditions 
precisely agrees with that under the effect of two single boundary conditions respectively; while the 
pressure distribution accords well with the set boundary conditions. These have proven the 
correctness of the solution using the method proposed. The method of changing the ways of the 
division and the setting of grids can be applied in the FEM analysis of other two dimensional 
Newtonian rheological models with regular shapes. 

Introduction 
This work took the pressure drag for the Newtonian fluids of polymer slabs as a research object. 
Then, Navier-Stock equations were used to solve the flow rate and pressure of the fluids based on 
FEM [1,2]. The two dimensional rheological models concerning the fluids of the slabs were 
conducted FEM analysis [3,4]. The values obtained show the distribution of the flow rate and the 
pressure for the polymer fluids based on the Newtonian rheological model [5]. In addition, the flow 
characteristics of the polymer fluids under the compound effect of the multiple boundary conditions 
were compared.  

Case Mode and Mathematical Equations 

Geometric Model 
We took the slow steady flow of the fluids for LLDPE material inside the space of the slab as an 
example, which was used as a Newtonian fluid at low shear rate. The rate of the surface drag within 
the slab is u=0.02 m/s, entrance pressure is p=2,000 Pa, and outlet pressure is p=0. The inferior wall 
(slab) is fixed. Meanwhile, 1300Pa sµ = ⋅  denotes the fluid viscosity at 230°C. Figure 1 illustrates 
the relevant simplified model concerning two-dimensional flow field distribution under the 
compound effect of pressure drag. 
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Fig.1 Two-dimensional Newtonian rheological model for the fluids within the slab 

Mathematical equations 
Based on the law of conservation of momentum, the relationship between the force applied on the 
fluids and fluids’ motion can be established. The motion equation of aforementioned fluid model 
can be described using Navier-Stock equations as[6]: 
the continuity equation:    
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the motion equation along y direction: 
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where, shear stressτ satisfies the constitutive Newtonian equation as 
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xxτ , xyτ , yxτ  and yyτ  represent the normal stresses, and shear stresses along the x and y directions 
respectively.  

Finite Element Solution and Numerical Calculation 
The Grid Division of the Computing Region  
Quadrilateral elements [7] were used to divide the grids in whole computing region, as shown in 
Figure 2: the whole quadrilateral element is divided into 12 quadrilateral units and then each 
quadrilateral is subdivided into four small regions according to its middle point. The units 
corresponding to flow rate are set to be one order higher than that of pressure units. The number of 
the discrete elements in whole grid is 12, the total node numbers of flow rate units, and pressure 
units are 63 and 20 respectively. 
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Fig.2 The discrete grids in computing region 

The parameters tables obtained based on discretization of grids consist of JMV-the node datum in 
flow rate unit, JMP-the node datum in pressure unit, JXYV-the coordinate data for the node in flow 
rate unit, JXYP-the coordinate data for the node in pressure unit, JBV-the boundary conditions of 
flow rate, and JBP- the boundary conditions of pressure. JMV and JMP are used to store the node 
number data relating to flow rate, and pressure, units respectively, while JXYV and JXYP can store 
the coordinate data for the flow rates and pressures in each node. JBV stores the data of boundary 
node numbers and the flow rates along the x and y directions. In addition, JBP is used to store the 
data including the unit number, the serial number of the edges of the boundary units, the cosine of 
outward normal at the edge of the boundary- cos xθ and cos yθ , and the pressure values at the first and 
second points in the edges of boundary.  

The Establishment of the Interpolation Function and Unit Equation 
The data of discrete elements were processed using an interpolation function. Φ  and ψ  are the 
interpolation functions for units of flow rate and pressure, separately. The derivatives of the 
interpolation function Φ  to x and y and to the dimensionless coordinates ξ  and η  of the 
interpolation function present the following relation, where J is the Jacobian matrix. 
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By multiplying the interpolation weight function ψ  by the continuity equation, a weighted residual 
equation for the continuity equation is established. Then, this equation is converted into the units of 
divided grids. 

( ) 0
e
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∂ ∂
ψ                                                             (6) 

The flow rate and pressure at each point are expanded using an interpolation function and then 
substituted into the above formula. Then, we acquire: 
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Where, e
Iu and e

Iv denote the vectors composed of the flow rate of each node in units along x and y 
direction, respectively; e

Ip stands for the vector constituted by pressure of each node in units.  

The above formula can be simplified as follows. 
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According to the transformational relation between interpolation functions and Jacobian matrices, 
ψ , J , 

x
∂
∂
Φ  and 

y
∂
∂
Φ  are all functions relating to ξ  and η . Therefore, Gauss integral is utilized 

as follows. 
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By substituting Formula (4) into Formula (3) and (2), then being multiplied by the weight function 
Φ , integration is performed in the computing region. Then, by expanding each item, an 
interpolation function is introduced and then converted to the units, thus obtaining the following 
formulas. 
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The above two formulas can be simplified as follows.  

11 12 1 1
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Where, 11
eD , 12

eD , 1
eC , 21

eD , 22
eD  and 2

eC  correspond to the items in the left of Formulas (13) and 
(14), respectively; while 1

eF  and 2
eF  accord with the items in the right of the two formulas 

separately. Based on the Gauss integral, these items can be converted as follows using numerical 
integration. 
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By combining the above formulas, the general equation for the units of discretized grids is 
obtained. Then, a general equation is obtained through iterative accumulation, where B, C, D and F 
are constituted by corresponding element matrices.   
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Results of Post-processing  

Calculation Flow 
The whole numerical calculation based on FEM is performed as follows: to begin with, the data of 
grids including the total number of grid units and nodes, nodes at each boundary and boundary units 
are read. In addition, the finite element data of flow rate units, JXYV, JMP and JXYP are also read. 
After setting the viscosity of materials, matrices of boundary conditions for flow rate and pressure 
are established according to actual situations. Afterwards, all the subblocks of coefficient matrices 
of units needed by the general equation are calculated so as to constitute the general equation. 
Finally, the diagonal normalization method is used to solve the general equation to further carry out 
post-processing of the data obtained.  

Data Post-processing 
After obtaining the solutions of the general equation, data of nodes including the coordinates, the 
flow rates along x and y directions and pressure are post-processed by Tecplot software in 
unstructured data form, as illustrated in Figure 3. Figures 3a, 3b and 3c demonstrate the 
distributions of flow rates under compound boundary conditions, the single effect of drag of the 
interior wall and the single effect of entrance pressure, respectively. Table 1 displays the comparison 
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of the flow rates of outlet nodes under the superimposed effect of single boundary conditions and 
compound boundary conditions. Based on the data obtained, it can be known that the accumulated 
results of data obtained under the single drag effect of the interior wall and those acquired under the 
single effect of entrance pressure equal to the flow rate under the compound effect of these two 
kinds of boundary conditions. The properties of fluids satisfy the accumulation characteristics of 
Newtonian fluids. In addition, it can be found from Table 1 that the pressure of fluids within the 
slab gradually reduces from the entrance, while numerical values of the contour of pressure in the 
direction perpendicular to the slab remain the same, corresponding to the set boundary conditions. 

 
a) distribution of flow rate under compound boundary conditions; b) distribution of flow rate 

under the drag of interior wall; 

 

c) distribution of flow rate under entrance pressure 

Fig.3 Distributions of the flow rate and pressure of fluids  
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Table 1 Comparison of flow rate of outlet nodes under the superimposed effect of single boundary 
conditions and compound boundary conditions 

Node 
No. 

Flow rate under the 
drag of walls 

Flow rate 
under the 
entrance 
pressure 

Accumulated flow rate 
at the outlet 

Flow rate under 
the compound 
effect at the outlet 

3 0 0 0 0 
29 0.0033 0.0068 0.0101 0.0102 
8 0.0067 0.0109 0.0176 0.0176 
42 0.0100 0.0123 0.0223 0.0223 
13 0.0133 0.0109 0.0242 0.0243 
55 0.0167 0.0068 0.0235 0.0235 
18 0.0200 0 0.0200 0.0200 

Results and Discussion  
Mainly aiming at two dimensional Newtonian rheological models with regular shapes, this work 
solved the flow rate and pressure of polymer fluids based on the FEM. Quadrilateral elements were 
used to discretize the grids in whole computing region. Then, according to the continuity of 
Navier-Stock equations, a weighted residual equation and a matrix element equation were 
established using an interpolation function and Jacobian matrix. Afterwards, these equations were 
combined to a general equation to further obtain the final flow rate and pressure of fluids. This 
method is also applicable to the flow of most fluids with regular shapes by generating 
corresponding computing regions and node information in the topology distribution of nodes in the 
program for the discretization of grids. The number of grids can be increased in the discretization of 
grids. However, as iterative computations are not needed in the solution of Newtonian fluids, the 
final precision of data obtained is slightly influenced.  
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