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Abstract. Linear diffraction grating interferometer measures displacement via two orthogonal 
signals generated from the optical outputs of fringes. Due to noises and regulation errors, two 
signals are not perfect. This paper presents a precision measurement method of displacement for 
given two non-orthogonal signals. The phase difference of two signals is first calculated by solving 
an equation derived from correlation principle. The subdivision value is then obtained with a 
compensation formula. By further counting the cycle number of periodic signal with an amplitude 
filtering algorithm, accurate value of displacement is outputted. Experimental results show that the 
proposed method can measure the displacement expressed with two non-orthogonal signals more 
reliably and accurately. 

Introduction 
Displacement is one of the most basic geometric parameters, accurate measurement of displacement 
is of great significance in various fields of industry. Compared to many micro/nano displacement 
measurement techniques, optical interferometry exhibits advantages of high precision and high 
resolution. There are two kinds optical interferometric techniques, namely laser interferometry and 
grating interferometry [1,2]. Figure 1 shows a linear diffraction grating interferometer for 
displacement measurement. A laser diode emits a laser beam onto a diffraction grating. After 
reflecting by mirrors, the resulting ±1st order diffracted beams meet together in the plane of 
photodetectors. Two electrical signals are generated from the optical outputs of interference fringes. 
After signal conditioning, two signals are sampled synchronously in a DSP sampler. A computer 
reads the waveforms of two signals and interprets the micro/nano displacement. 

 
Fig. 1. A linear diffraction grating interferometer for displacement measurement 

In a typical grating interferometric displacement measurement system, two signals are well 
regulated for achieving sine waveforms and a quarter phase difference ( / 2π ). Such two signals are 
named as two orthogonal signals, or A-quarter-B (i.e., AQB) signals. Once AQB signals are 
obtained, a subdivision system can provide displacement with subdivision resolution. Unfortunately, 
due to optical interferences, electrical noises and mechanical regulation errors, two signals are not 
perfect both in waveform and in phase difference. Such two non-orthogonal signals will generate a 
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big subdivision error. A software measuring method of two non-orthogonal signals is desired. 

Phase Difference Measurement Based on Correlation Principle 
Currently, there are many methods used in measuring the phase difference of two signals. These 
methods include cross-zero, correlation algorithm, DFT [3-6] etc. Correlation method calculates 
phase difference by solving the value of cross-correlation function at a zero-delay of two sine 
signals with a same frequency [7]. Compared to other methods, correlation method has a good 
ability of noise suppression. But traditional correlation method exhibits lower precision in the 
condition of non integer period sampling. An algorithm is thus proposed in this paper to overcome 
such limitation. The modified correlation algorithm can improve the measuring accuracy of phase 
difference, and its principle is illustrated as follows.  

Two signals with a same frequency can be expressed as 

1( ) cos( ) ( )x t A t tNω θ= + +                                                            (1) 

2( ) cos( ) ( )y t B t tNω θ ϕ= + + +                                                          (2) 

where A , B denote as the amplitudes of the two signals, and θ  is the initial phase of signal 
( )x t  ,θ ϕ+  is the initial phase of ( )y t , and 1( )tN  and 2( )tN  are noises superimposed on two 

signals. 
Correlation functions of two signals can be calculated by N sampling points with 
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By adding formula (3) and formula (4), and using some properties of trigonometric function, 
formula (5) can be written as 

2 (0) (0) (0) 1 02coscos xx yyxyR R Rϕ ϕ− + − =• +                                            (6) 

By equation (6), phase difference ϕ  can be solved as 
2arccos( 4 4( 1) / 2)xy xy xx yyR R R Rϕ = ± − −+                                            (7) 

Considering the fact of  
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it is possible to determine the range of phase difference by Rxy(0). When Rxy(0)>0, the range of 
phase difference is [ ]0, / 2π , the phase difference should be calculated as 

2arccos( 4 4( 1) / 2)xy xy xx yyR R R Rϕ = + − −+                                             (9) 
When Rxy(0)<0, the range of phase difference is [ ]/ 2,π π , the phase difference should be 

calculated as 
2arccos( 4 4( 1) / 2)xy xy xx yyR R R Rϕ = − − −+                                            (10) 

Thus, the procedure of calculating phase difference with the modified correlation algorithm is 
1) Normalizing the amplitudes of two signals; 
2) Filtering signals with an adaptive filter; 
3) Calculating correlation functions (0) (0) (0)  xx yy xyR R R， ，  by N sampling points; 
4) Calculating phase difference ϕ  by formula (9) or formula (10). 
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Signal Subdivision 
Typically, the output signals of a displacement are not integer number of cycles. There is a need to 
calculate the non-periodic part of two signals. The non-periodic part is usually expressed by a phase 
angle α  in a Lissajous figure. In the condition that two signals are orthogonal and have same 
amplitude, the phase angle α  of the non-periodic part can be calculated with a Lissajous circle as 
[8] 

( )yarctan 2 ,  xI Iα =                                                                   (11) 

In the condition that two signals have same amplitude but are not in quadrature, the phase angle 
α  of the non-periodic part can be calculated with a Lissajous ellipse as [9,10] 

arctan 2( sin ,  cos )y xI Iα y y= −                                                      (12) 

where xI  and yI  are the levels of two signals at the subdivision position, 2y ϕ π= −  and 
ϕ  is phase difference estimated by the modified correlation algorithm. When 2ϕ π= , i.e. two 
signals are orthogonal, formula (12) becomes formula (11). 

Formula (12) is basically a compensation formula of phase angle, and α  is a compensated 
phase angle. Once the phase angle α  is obtained, the subdivision displacement can be calculated 
as 

( 2 )*L lα π∆ =                                                                       (13) 
where l  is a half pitch of the diffraction grating. 

Counting Cycle Number with an Amplitude Filter 
Because there are distortions in two filtered signals, an amplitude filter is designed for accurate 
counting the cycle number of two signals. The amplitude filter first calculates the slope of two 
adjacent sampling points, and the sign of slope is used for indentifying the peaks and valleys in a 
signal. When the sign of slope changes from positive into negative, the current point is marked as a 
peak. When the sign of slope changes from negative to positive, the current point is marked as a 
valley. 

The amplitude filter takes a couple of peak and valley. If peak occurs first, the peak is marked as 
a valid peak. If their height difference is less than a half of the amplitude of a signal, cycle counter 
does not work. Taking a next couple of peak and valley, if the height difference of the first peak and 
the last valley is greater than a half of the amplitude, cycle counter works to add 1. Taking the next 
couple of peak and valley, the peak is marked as a valid peak again, and doing above process 
iteratively. Finally, accumulated number of cycle counter subtracts 1 to represent the number of 
segments of periodic part of a signal. 

If valley occurs first, the valley is marked as a valid valley. If the height difference of peak and 
valley is less than a half of the amplitude of a signal, cycle counter does not work. Taking a next 
couple of valley and peak, if the height difference of the first valley and the last peak is greater than 
a half of the amplitude, cycle counter works to add 1. Taking the next couple of valley and peak, the 
valley is marked as a valid peak again, and doing above process iteratively. Finally, accumulated 
number of cycle counter subtracts 1 to represent the number of segments of periodic part of a signal. 

Once the cycle number n of integer periods of a signal is obtained, the displacement of integer 
periods will be *n l . The total displacement measured will be  

1 2*L n l L L= + ∆ +∆                                                                   (14) 
where l  is a half pitch of the diffraction grating, n is the cycle number of integer periods, 1L∆  

and 2L∆  are two subdivision displacements at starting and ending positions calculate by formula 
(13). 
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Experimental Results 
To verify the effectiveness of estimated phase difference with the modified correlation algorithm, 
two simulated sine signals are generated. Two signals have same amplitude and a same angular 
frequency ( / 50ω π= ). Their initial phases are θ =0° and θ ϕ＋ =95°, and phase difference is 95°. 
The two signals are shown in Figure.2, and the calculating results of phase difference varied with N 
sampling points are shown in Table 1. 

As can be seen from Table 1, the phase difference is not affected by the number of sampling 
points. The modified correlation algorithm is of high accuracy. In addition, the error of phase 
difference is smaller when the number of sampling points N is around 200. So the number of 
sampling points is chosen as N=200. Comparing to other traditional correlation algorithms, the 
proposed algorithm overcomes the limitation that the number of sampling points must be an integer 
number of periods. 

Table 1 The error of phase difference with N 
N Phase difference (°) Error (°) 

100 96.006 1.006 

150 95.708 0.708 

200 95.423 0.423 

250 95.470 0.470 

300 95.471 0.471 

To verify the proposed precision measuring method of displacement, a measuring experiment is 
conducted. In the grating interferometric displacement measurement system as illustrated in Figure 
1, the diffraction grating is driven by a precision piezoelectric stage only in one direction. The 
piezoelectric stage (SFS-H60XY by Sigma koki) has a step resolution of 1 nm. A known 
displacement 20.033L mm=  is applied. The diffraction grating has a line density of 2400 l/mm 
(half pitch of grating=0.2083 mm ). The sampling frequency is 1 kHz. Two sampled signals before 
filtering and after filtering are shown in Figure 3. 

 

(a) 
 

(b) 
Fig. 3. Partial waveforms of two measured signals resulted by a displacement:  

(a) two original signals and (b) two filtered signals 
Table 2 The measuring result and error of the displacement 

True displacement 
( mm ) 

Phase difference 
(°) 

Measured displacement 
( mm ) 

Error 
( mm ) 

 

Fig.2 Two sine signals with 
  a phase difference of 95° 
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20.033 121.079 20.067 0.034 

By using the modified correlation algorithm, the phase difference of two signals after filtering is 
calculated as 121.079°, the number of cycle counter is n=96, the total displacement measured is 
20.067 mm , and measuring error is 0.034 mm . The displacement resolution of the grating 
interferometric displacement measurement system is less than 10 nm. The experimental results are 
shown in Table 2. 

Conclusion 
This paper presents a precision measurement method of displacement for given two non-orthogonal 
signals outputted from a diffraction grating interferometric displacement measurement system. The 
phase difference of two signals is calculated by a modified correlation algorithm. The subdivision 
displacement is calculated with a compensated phase angle. Cycle number of periodic part of a 
signal is counted with an amplitude filter algorithm. A measuring experiment of displacement is 
performed and experimental results show that the proposed method is feasible and of a good ability 
of noise suppression. 
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