

A Fully Homomorphic Encryption Scheme over Finite Prime Field
Liwang Bai1, b, Qiqi Zhao1, c and Yuqing Lan1, a

1School of Computer Science and Engineering, Beihang University, Beijing 100191, China;
a lanyuqing@buaa.edu.cn, b bailiwang@buaa.edu.cn, c kiki_pri@163.com

Keywords: data security; fully homomorphic encryption; finite prime field; recrypt.

Abstract. Data security of small & medium-sized banks in transmission, storage and even calculation
in cloud environment challenges traditional encryption technology. Nevertheless, homomorphic
encryption technology could meet users’ needs in data privacy and cloud computing resources
simultaneously. Current homomorphic encryption schemes have limited plaintext space and thus
limited application scenarios. Based on the homomorphic encryption scheme over integer proposed
by Dijk et al., this paper proposes an enhanced scheme which expands the plaintext space from
monobit range to a finite prime field, and verifies the correctness and efficiency of it, effectively
promoting the practicability of homomorphic encryption.

Introduction
Due to limited manpower, material and financial resources, small & medium-sized commercial

banks tend to construct their IT service system with cloud hosting, in which case, all the data from the
bank customers is managed by the cloud service provider, for whom data security must be the
primary consideration. Traditional encryption technology plays an essential role in data transmission
and storage, but when part of the bank's core data, including the account balance, transaction records
and other data, requires invisibility while they are calculated, counted and updated in real time by the
cloud service provider, traditional encryption technology fails to calculate it in encrypted state and
return the correct result. Is it possible to have a kind of technology with which the bank can keep data
private and secure, and can also make full use of the cloud computing resources?

Fully homomorphic encryption (FHE for short) is a form of encryption that allows computations to
be carried out freely on ciphertext without the information of the cipher code, i.e., for any effective
function f and plaintext m, the equation 𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓�𝐸𝐸𝑛𝑛𝑛𝑛(𝑚𝑚)�) = 𝑓𝑓(𝑚𝑚) is true. With this special property,
fully homomorphic encryption is widely used in theory and practice, such as cloud computing
security, ciphertext retrieval and secure multiparty computation, etc. [1]. In 2009, Gentry proposed
the idea of homomorphic decryption and constructed the first fully homomorphic encryption scheme
based using ideal lattice [3], and then another scheme was constructed based on the assumption of
LWE (Ring --LWE) [4,5], which promotes the efficiency and practicality of homomorphic
encryption. However, plaintext space is basically 𝐹𝐹2 (only two elements: 0, 1), or 𝐹𝐹2𝑛𝑛 (a vector of
monobit data) in the existing mature scheme while the messages to be encrypted and computed are
not only 0 or 1 but also many other numbers in reality. With the current scheme, the data need to be
converted into binary number, then be encrypted bit by bit, i.e., number n needs to be encrypted
⌈𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛⌉ times, resulting larger ciphertext, and longer encryption and decryption time. Aiming at the
problem of too limited plaintext space, this paper improves the existing scheme, expands the plaintext
space from prime field 𝐹𝐹2 to 𝐹𝐹𝑝𝑝, and therefore increases the applicability of the scheme in bank data
hosting and other secure cloud computing scenarios.

Related Works
Fully homomorphic encryption, presented by Rivest et al. in 1978, is known as the "Holy Grail" in

the cryptography field and remains an unsolved problem. Subsequently, many schemes tackling this
problem had been proposed, some of which either satisfy the additive homomorphism or the

6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (MMEBC 2016)

© 2016. The authors - Published by Atlantis Press 610

multiplicative homomorphism, and some of which can satisfy both the addition and multiplication
finitely.

In 2009, Gentry constructed the first fully homomorphic encryption scheme utilizing ideal lattice
[3], which broke through the morass. Many researchers in the world proposed their improved
solutions in different aspects [6-12], which are essentially based on the ideals of all sorts of rings.

The general framework for constructing FHE schemes are as follows. (1)Construct a somewhat
homomorphic encryption (SHE) scheme which can merely carry out the computation of lower-order
polynomials. (2) “Squash” the decrypt circuit to lower down its multiplicative degree and make sure
the circuit can be evaluated by the scheme. Then the scheme is “bootstrappable” because it can
prevent the noise of ciphertext from increasing after every evaluation. (3) Apply Gentry's
transformation to get an FHE scheme from the bootstrappable scheme.

Some representative schemes should be noticed. In 2010, Dijk, Gentry, Halevi and
Vaikuntanathan proposed the fully homomorphic encryption scheme over integers (DGHV scheme
for short) [10], of which the concept is simple; in 2013, Cheon et al. proposed a multi-bit fully
homomorphic encryption scheme [11]. They used the Chinese Remainder Theorem to encrypt multi
bits at one time, which improved the efficiency of FHE significantly ; in 2011, based on the “partially
approximate common divisor problem” [13], Tang Dianhua, Zhu Shixiong and Cao Yunfei improved
the DGHV scheme by proposing a FHE scheme[14] faster in key generation and encryption.

Preliminaries
Homomorphic Encryption Scheme. A homomorphic encryption scheme contains four

algorithms: the key generation algorithm 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, the encryption algorithm 𝐸𝐸𝐸𝐸𝐸𝐸, the decryption
algorithm 𝐷𝐷𝐷𝐷𝐷𝐷 and the ciphertext computation algorithm 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑝𝑝，𝑓𝑓，𝑐𝑐1，…，𝑐𝑐𝑡𝑡). Since the
homomorphic encryption is designed to calculate the ciphertext, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is the core of the scheme,
while others are its base to provide encryption and decryption functions.
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. (𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠) ← 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 (𝑘𝑘)，choose a parameter K，and generate the public key 𝑝𝑝𝑝𝑝 and

the secret key 𝑠𝑠𝑠𝑠.
𝐸𝐸𝐸𝐸𝐸𝐸. 𝑐𝑐 ← 𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝 (𝑚𝑚), encrypt plaintext 𝑚𝑚 with public key 𝑝𝑝𝑝𝑝, and output ciphertext 𝑐𝑐.
𝐷𝐷𝐷𝐷𝐷𝐷. 𝑚𝑚 ← 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠(𝑐𝑐), decrypt the ciphertext 𝑐𝑐 with secret key 𝑠𝑠𝑠𝑠, and output plaintext 𝑚𝑚.
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. Input public key 𝑝𝑝𝑝𝑝, function 𝑓𝑓 with 𝑡𝑡 inputs and a set of ciphertext 𝑐𝑐 = (c1, c2, . . . , c𝑡𝑡),

in which 𝑐𝑐𝑖𝑖 is the ciphertext of 𝑚𝑚𝑖𝑖 , output 𝑐𝑐∗ = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑝𝑝, 𝑓𝑓, 𝑐𝑐) , and meet the equality
of 𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠, 𝑐𝑐∗) = 𝑓𝑓(𝑚𝑚1,𝑚𝑚2, . . .𝑚𝑚𝑡𝑡).

Homomorphic encryption scheme must be able to evaluate the following basic functions.
𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐1, 𝑐𝑐2)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑐𝑐1, 𝑐𝑐2)
Homomorphic Decryption. The noise of ciphertext increases rapidly in evaluation, especially in

the multiplicative computation, which limits the times of evaluation and leads to possible failure to
decrypt the result. Thus, noise control becomes the crucial problem to realize fully homomorphic
encryption. Gentry uses an important technique named homomorphic decryption to solve the problem.
He respectively encrypts the ciphertext output and the corresponding key bit by bit by evaluation ,
and executes decryption algorithm onto them, which (called ciphertext refresh) will produce a new
ciphertext with the same noise scale as the ciphertext has before evaluation while the corresponding
plaintext can be decrypted exactly. If the noise of the new ciphertext is low enough to permit another
multiplication, there will be an immediate following evaluation after the evaluation of the ciphertext
by refreshing ciphertext through homomorphic decryption. Through this recursive process,the
ciphertext can be evaluated infinitely and thus the fully homomorphic encryption.

The process of homomorphic decryption are as follows.
Assume that 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑝𝑝1,𝑚𝑚) → 𝑐𝑐1,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑝𝑝2, 𝑠𝑠𝑠𝑠1𝑗𝑗) → 𝑠𝑠𝑠𝑠1������⃗，every element of 𝑠𝑠𝑠𝑠����⃗ 1 is the

ciphertext from every bit of 𝑠𝑠𝑠𝑠1, and is encrypted with public key 𝑝𝑝𝑝𝑝2.
The algorithm can be expressed as:
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑝𝑝2，𝐷𝐷𝐷𝐷𝐷𝐷，𝑠𝑠𝑠𝑠1������⃗，𝑐𝑐1)：

611

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑝𝑝𝑝𝑝2，𝑐𝑐1𝑗𝑗) → 𝑐𝑐1���⃗；
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑝𝑝𝑝𝑝2，𝐷𝐷𝐷𝐷𝐷𝐷，𝑠𝑠𝑠𝑠1������⃗，𝑐𝑐1���⃗) → 𝑐𝑐2.
𝑐𝑐1 is the ciphertext with double encryption from 𝑚𝑚, the first layer is encrypted with 𝑝𝑝𝑝𝑝1, and the

second layer is encrypted with 𝑝𝑝𝑝𝑝2 ; 𝑐𝑐2 is the result of homomorphic decryption, the same as
ciphertext from 𝑚𝑚 with 𝑝𝑝𝑝𝑝2.

The significance of homomorphic decryption lies in noise reduction. We can get the plaintext by
decrypting the ciphertext with large noise (eliminate noise), and then encrypt it again with a new key
(import new noise), which makes the noise smaller. This process only requires one single operation
on ciphertext, and does not expose the plaintext. If a multiplication operation can be executed with
small-enough noise, the purpose of homomorphic decryption is achieved.

DGHV Scheme. In June 2010, Dijk, Gentry, Halevi and Vaikuntanathan published a paper
entitled Fully Homomorphic Encryption over the Integers [10].The solution in the paper is an
improved scheme of Gentry’s by replacing ideal lattice with integer ring, and using the addition and
multiplication on the integer ring instead of the operation on the ideal lattice. The scheme is easy to
understand for its simple concept.

Firstly, a symmetric encryption scheme was proposed by Dijk et al.
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝜀𝜀. The key 𝑝𝑝 is a prime number and 𝑝𝑝 ∈ (2𝜂𝜂−1, 2𝜂𝜂];;
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝜀𝜀. Input plaintext 𝑚𝑚, the key 𝑝𝑝, output 𝑐𝑐 ← 𝑚𝑚 + 𝑝𝑝𝑝𝑝 + 2𝑟𝑟，while 𝑞𝑞, 𝑟𝑟 are random integer

and 𝑚𝑚 + 2𝑟𝑟 < 𝑝𝑝/2;
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝜀𝜀. Input ciphertext 𝑐𝑐 and the key 𝑝𝑝, output plaintext 𝑚𝑚 ← (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)𝑚𝑚𝑚𝑚𝑚𝑚2;
The scheme above can decrypt correctly while noise 𝑚𝑚 + 2𝑟𝑟 is smaller than 𝑝𝑝/2.
Then the asymmetric encryption schemes was given. Its public key is composed of some

encryption result from 0, i.e. 𝑥𝑥𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑝𝑝 + 2𝑟𝑟𝑖𝑖, while 𝑞𝑞𝑖𝑖 and 𝑟𝑟𝑖𝑖 are chosen randomly in the above way.
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝜀𝜀：K𝑝𝑝 = 〈𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝜏𝜏, 〉，𝐾𝐾𝑠𝑠 = 𝑝𝑝；
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝜀𝜀. Input the plaintext 𝑚𝑚 ∈ {0,1}, the public key 𝐾𝐾𝑝𝑝, output ciphertext 𝑐𝑐 ← 𝑚𝑚 + 2𝑟𝑟 + ∑𝑥𝑥𝑖𝑖；
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝜀𝜀. Input ciphertext 𝑐𝑐 and the secret key 𝐾𝐾𝑠𝑠, output plaintext 𝑚𝑚 ← (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)𝑚𝑚𝑚𝑚𝑚𝑚2;
A somewhat homomorphic encryption scheme was formed by Dijk et al. through adding

parameters and introducing 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 algorithm.
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝜀𝜀 . The secret key 𝑝𝑝 is a prime number and 𝑝𝑝 ∈ (2𝜂𝜂−1, 2𝜂𝜂) ,the public key K𝑝𝑝 =

〈𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝜏𝜏〉，while 𝑥𝑥𝑖𝑖 ← D𝜏𝜏,𝜌𝜌(𝑝𝑝), D𝜏𝜏,𝜌𝜌(𝑝𝑝) = �𝑥𝑥𝑖𝑖�𝑥𝑥𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑖𝑖 + 𝑟𝑟𝑖𝑖; 𝑞𝑞𝑖𝑖 ←
Ζ⋂[0,2𝛾𝛾]

𝑝𝑝
� , 𝑟𝑟 ← Ζ⋂[−2𝜌𝜌, 2𝜌𝜌]，

let 𝑥𝑥0 = max{𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝜏𝜏}，and 𝑥𝑥0 is an odd integer, 𝑟𝑟𝑝𝑝(𝑥𝑥0) is an even integer;
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝜀𝜀. Input plaintext 𝑚𝑚 ∈ {0,1}, the public key 𝐾𝐾𝑝𝑝, choose a random subset 𝑆𝑆 ⊆ {1,2,⋯ , 𝜏𝜏),

and a random integer r ∈ (−2𝜌𝜌, 2𝜌𝜌), output 𝑐𝑐 ← [𝑚𝑚 + 2𝑟𝑟 + 2∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝑆𝑆]𝑥𝑥0;
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝜀𝜀. Output 𝑚𝑚 ← (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)𝑚𝑚𝑚𝑚𝑚𝑚2, while the input are ciphertext 𝑐𝑐 and the secret key 𝐾𝐾𝑠𝑠;
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. Given the circuit 𝐶𝐶𝜀𝜀, the public key 𝐾𝐾𝑝𝑝 and ciphertexts 𝑐𝑐𝑗𝑗, apply the (integer) addition

and multiplication gates of 𝐶𝐶𝜀𝜀 to the ciphertexts, performing all the operations over the integers, and
return the resulting integer.

Make sure that|𝑚𝑚 + 2𝑟𝑟| < 𝑝𝑝/2 to ensure the correctness of decryption. Note that (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) =
𝑐𝑐 − 𝑝𝑝 ∙ ⌊𝑐𝑐/𝑝𝑝⌉, and as p is odd we can instead decrypt using the formula
𝑚𝑚 ← (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)𝑚𝑚𝑚𝑚𝑚𝑚2 = (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 2) ⊕ (⌊𝑐𝑐/𝑝𝑝⌉𝑚𝑚𝑚𝑚𝑚𝑚2).
According to the above formula of decryption circuit, the complexity of the decryption circuit is

mainly derived from (⌊𝑐𝑐/𝑝𝑝⌉𝑚𝑚𝑚𝑚𝑚𝑚2). Unfortunately, the complexity of (⌊𝑐𝑐/𝑝𝑝⌉𝑚𝑚𝑚𝑚𝑚𝑚2) has exceeded 𝑑𝑑,
which is the depth of permitted 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 circuit in the scheme, so it is necessary to "squash the
decrypt circuit " [3].

Firstly, the related parameters are given.
γ is the bit-length of the integers in the public key;
η is the bit-length of the secret key;
ρ is the bit-length of the noise;
τ is the number of integers in the public key.
These parameters must be set under the following constraints for the sake of security:

612

ρ = ω(𝑙𝑙𝑙𝑙𝑙𝑙 λ𝜀𝜀), to protect against brute-force attacks on the noise;
η ≥ ρ · 𝛩𝛩(λ𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙2λ𝜀𝜀), in order to support homomorphism to evaluate the “squashed decryption

circuit”;
γ = ω (η2𝑙𝑙𝑙𝑙𝑙𝑙 λ𝜀𝜀), to thwart various lattice-based attacks on the underlying approximate-gcd

problem.
Then 3 other parameters are introduced, κ = γη/ρ′ , r𝑠𝑠𝑠𝑠𝑡𝑡 = 𝜔𝜔(𝜅𝜅 𝑙𝑙𝑙𝑙𝑙𝑙λ𝜀𝜀), r𝑠𝑠𝑠𝑠𝑠𝑠 = λ𝜀𝜀.
They add to the public key a set 𝑦⃗𝑦 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦Θ} of rational numbers in [0, 2) with 𝑘𝑘 bits of

precision, the details of the modified encryption scheme are as follows:
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝜀𝜀 . Generate 𝐾𝐾𝑠𝑠∗ = 𝑝𝑝 and 𝐾𝐾𝑝𝑝∗ as before. Set 𝑥𝑥𝑝𝑝 = ⌊2𝜅𝜅/𝑝𝑝⌉ , choose at random a 𝛩𝛩 -bit

vector 𝑠𝑠 = (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠Θ) with Hamming weight 𝜃𝜃 , and let 𝑆𝑆 = {𝑖𝑖|𝑠𝑠𝑖𝑖 = 1}，choose at random
integers 𝑢𝑢𝑖𝑖 ∈ Ζ⋂(0, 2𝜅𝜅+1), 𝑖𝑖 = 1, . . . ,𝛩𝛩, subject to the condition that ∑𝑢𝑢𝑖𝑖 = 𝑥𝑥𝑝𝑝(𝑚𝑚𝑚𝑚𝑚𝑚 2𝜅𝜅+1)，let
𝑦𝑦𝑖𝑖 = 𝑢𝑢𝑖𝑖/2𝑘𝑘 , 𝑦⃗𝑦 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦Θ}，output K𝑝𝑝 = (𝐾𝐾𝑝𝑝∗, 𝑦⃗𝑦)，𝐾𝐾𝑠𝑠 = 𝑠𝑠；
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝜀𝜀 .Generate a ciphertext 𝑐𝑐∗ as before. Then for 𝑖𝑖 = 1,2, … , 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 , let 𝑧𝑧𝑖𝑖 ← [𝑐𝑐∗ × 𝑦𝑦𝑖𝑖]2 ,

keeping only 𝑛𝑛 = ⌊𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠⌉ + 3 bits of precision after the binary point for each 𝑧𝑧𝑖𝑖 , output 𝑐𝑐 =
(𝑐𝑐∗, 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧set).
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝜀𝜀. Output 𝑚𝑚′ ← [𝑐𝑐∗ − �∑ 𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖

𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1 �]2 with 𝑐𝑐∗,𝑧𝑧𝑖𝑖 and the secret key 𝐾𝐾𝑠𝑠.

Homomorphic Encryption Scheme over 𝑭𝑭𝒑𝒑

In order to increase the practicability, this section provides an improvement of the DGHV scheme
in Reference [10], expanding the plaintext space from prime field 𝐹𝐹2 to 𝐹𝐹𝑝𝑝, then squashing the decrypt
circuit, and making the scheme bootstrappable.

Design of Scheme. We first give a somewhat homomophic encryption scheme, and then change it
into the full homomophic encryption scheme.

A. SHE scheme
The choice of parameters is crucial to the scheme, the parameters of this paper are set according to

the DGHV scheme.
a) Parameters

γ is the bit-length of the integers in the public key;
η is the bit-length of the secret key;
ρ is the bit-length of the noise;
ε is the bit-length of the plaintext;
ξ is the bit-length of prime number 𝑝𝑝.
These parameters must be set under the following constraints:
ρ = ω(𝑙𝑙𝑙𝑙𝑙𝑙 λ𝜀𝜀), to protect against brute-force attacks on the noise;
η ≥ ρ · 𝛩𝛩(λ𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙2λ𝜀𝜀), in order to support homomorphism for deep enough circuits to evaluate the

“squashed decryption circuit”;
γ = ω (η2𝑙𝑙𝑙𝑙𝑙𝑙 λ𝜀𝜀), to thwart various lattice-based attacks on the underlying approximate-gcd

problem.
ξ ≤ 𝛩𝛩(η𝑙𝑙𝑙𝑙𝑙𝑙 λ𝜀𝜀), in order to ensure that the noise does not exceed the threshold, and the scheme is

correct.
ε ≤ ξ/2, in order to ensure that the plaintext 𝑚𝑚 is a element of finite prime field 𝐹𝐹𝑝𝑝 so that the

scheme here can be used for encrypt .
We also use another noise parameter ρ’ = ρ + ω(𝑙𝑙𝑙𝑙𝑙𝑙 λ𝜀𝜀), a simple parameter setting method is

setting ρ = λ𝜀𝜀，ρ’ = 2λ𝜀𝜀，η = 𝛩𝛩(𝜆𝜆𝜀𝜀2)，γ = 𝛩𝛩(𝜆𝜆𝜀𝜀5).

b) symmetric encryption scheme
A simple symmetric encryption scheme is given in document [14], and this paper adopts a similar

encryption algorithm to document [10] and [14] in order to illustrate clearly the improvements. The

613

improved scheme can encrypt any integer less than 𝑝𝑝 by expanding the plaintext space from prime
field 𝐹𝐹2 to 𝐹𝐹𝑝𝑝 instead of converting the integer into binary form and encrypting it bit by bit, therefore,
and thus the efficiency of the scheme is greatly increased. In this section we consider the plaintext
space as prime field 𝐹𝐹𝑝𝑝, i.e., the plaintext 𝑚𝑚 ∈ {0,1,⋯ ,𝑝𝑝 − 1}, in which 𝑝𝑝 is a prime number, and the
ciphertext space is ℂ.
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(λ𝜀𝜀). For the secret key, choose a η-bits prime number 𝑠𝑠 in (2ℤ + 1)⋂[2𝜂𝜂−1, 2𝜂𝜂).
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐾𝐾𝑝𝑝,𝑚𝑚), Given arbitrary integer 𝑚𝑚 ∈ {0,1,⋯ ,𝑝𝑝 − 1}, calculate 𝑐𝑐 = 𝑚𝑚 + 𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑝𝑝 , in

which 𝑞𝑞 ∈ (2𝛾𝛾 − 1, 2𝛾𝛾] and 𝑟𝑟 ∈ (2𝜌𝜌−1, 2𝜌𝜌) are random integers.
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐾𝐾𝑠𝑠, 𝑐𝑐). Output 𝑚𝑚←(𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
Does the modified scheme still maintain the homomorphic properties on multiplication and

addition over integers? Verification is as follows.
Assume that 𝑐𝑐1 = 𝑚𝑚1 + 𝑠𝑠𝑞𝑞1 + 𝑝𝑝𝑟𝑟1, 𝑐𝑐2 = 𝑚𝑚2 + 𝑠𝑠𝑞𝑞2 + 𝑝𝑝𝑟𝑟2, then

E(𝑚𝑚1) + E(𝑚𝑚2) = 𝑐𝑐1 + 𝑐𝑐2 = 𝑚𝑚1 + 𝑠𝑠𝑞𝑞1 + 𝑝𝑝𝑟𝑟1 + 𝑚𝑚2 + 𝑠𝑠𝑞𝑞2 + 𝑝𝑝𝑟𝑟2
= 𝑚𝑚1 + 𝑚𝑚2 + 𝑠𝑠(𝑞𝑞1 + 𝑞𝑞2) + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2) = E(𝑚𝑚1 + 𝑚𝑚2)

𝐸𝐸(𝑚𝑚1) × 𝐸𝐸(𝑚𝑚2) = 𝑐𝑐1 × 𝑐𝑐2 = (𝑚𝑚1 + 𝑠𝑠𝑞𝑞1 + 𝑝𝑝𝑟𝑟1) × (𝑚𝑚2 + 𝑠𝑠𝑞𝑞2 + 𝑝𝑝𝑟𝑟2)

= 𝑚𝑚1 × 𝑚𝑚2 + 𝑠𝑠(𝑚𝑚2𝑞𝑞1 + 𝑚𝑚1𝑞𝑞2 + 𝑝𝑝𝑟𝑟1𝑞𝑞2 + 𝑝𝑝𝑟𝑟2𝑞𝑞1 + 𝑠𝑠𝑞𝑞1𝑞𝑞2) + 𝑝𝑝(𝑚𝑚1𝑟𝑟2 + 𝑚𝑚2𝑟𝑟1
+ 𝑝𝑝𝑟𝑟1𝑟𝑟2) = 𝐸𝐸(𝑚𝑚1 × 𝑚𝑚2)

The noise is 𝑚𝑚 + 𝑝𝑝𝑝𝑝 in the scheme. If 𝑚𝑚 + 𝑝𝑝𝑝𝑝 < 𝑠𝑠/2 , the decryption algorithm
is 𝑚𝑚←(𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠)𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 = (𝑚𝑚 + 𝑝𝑝𝑝𝑝)𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, we can get the plaintext 𝑚𝑚 from ciphertext 𝑐𝑐, or we
will fail to obtain correct result.

c) Asymmetric encryption scheme

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(λ𝜀𝜀). Generate the secret key 𝐾𝐾𝑠𝑠 by choosing a prime number 𝑠𝑠 ∈ [2𝜂𝜂−1, 2𝜂𝜂], choose a
prime number 𝑞𝑞 ∈ �2θ−1, 2θ� randomly, then choose at random two integers 𝑙𝑙 ∈ [0, 2𝛾𝛾/𝑠𝑠] and ℎ ∈
(−2𝜌𝜌, 2𝜌𝜌), set 𝑁𝑁 = 𝑠𝑠𝑠𝑠, calculate 𝑥𝑥 = 𝑠𝑠𝑠𝑠 + 𝑝𝑝ℎ. Output the public key 𝐾𝐾𝑝𝑝 = (𝑁𝑁, 𝑥𝑥) and the secret
key 𝐾𝐾𝑠𝑠 = 𝑠𝑠.

Choose at random two integers 𝑟𝑟1 ∈ (−2ρ’, 2ρ’) and 𝑟𝑟2 ∈ (−2ρ, 2ρ) , output 𝑐𝑐 = (𝑚𝑚 + 𝑝𝑝𝑟𝑟1 +
𝑟𝑟2𝑥𝑥) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 while 𝐾𝐾𝐾𝐾 = (𝑁𝑁, 𝑥𝑥).
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐾𝐾𝑠𝑠, 𝑐𝑐). Output 𝑚𝑚←(𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�𝐾𝐾𝑝𝑝,𝐶𝐶, 𝑐𝑐1,⋯ , 𝑐𝑐𝑔𝑔�. For a given circuit 𝐶𝐶𝜀𝜀 and 𝑔𝑔 ciphertexts 𝑐𝑐𝑖𝑖, replace the addition and

multiplication gates in original circuit with gates for addition and multiplication mod N, after
inputting 𝑔𝑔 ciphertexts, perform all the operations and output the result eventually. Note that in
order to decrypt correctly, we should have −𝑠𝑠/2 < 𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠 < 𝑠𝑠/2.

d) Correctness of decryption

The noise is 𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠 in the scheme, and 𝑐𝑐 = 𝑚𝑚 + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2ℎ) + 𝑠𝑠(𝑟𝑟2𝑙𝑙 − 𝑘𝑘𝑘𝑘) , ⌊𝑐𝑐/𝑠𝑠⌉ is
calculated firstly in decryption, is equal to calculating integer quotient 𝑟𝑟2𝑙𝑙 − 𝑘𝑘𝑘𝑘 of 𝑐𝑐/𝑠𝑠, since
𝑐𝑐/𝑠𝑠 = 𝑚𝑚+𝑝𝑝(𝑟𝑟1+𝑟𝑟2ℎ)

𝑠𝑠
+ 𝑟𝑟2𝑙𝑙 − 𝑘𝑘𝑘𝑘

In order to satisfy ⌊𝑐𝑐/𝑠𝑠⌉ = 𝑟𝑟2𝑙𝑙 − 𝑘𝑘𝑘𝑘, the following conditions need to be satisfied

|
 𝑚𝑚 + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2ℎ)

𝑠𝑠
| <

1
2

That is

| 𝑚𝑚 + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2ℎ)| <
𝑠𝑠
2

Then we have 𝑐𝑐 − ⌊𝑐𝑐/𝑠𝑠⌉ = 𝑚𝑚 + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2ℎ), the next stage of decryption is perform the operation

modulo 𝑝𝑝 on 𝑐𝑐 − ⌊𝑐𝑐/𝑠𝑠⌉. Since 𝑚𝑚 < 𝑝𝑝/2, there is �𝑚𝑚 + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2ℎ)� 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 = 𝑚𝑚, thus the plaintext
is recovered correctly.

Analysis on noise and degree of evaluable polynomial:
Observe the change of noise in the verification on homomorphism above, the noise in

homomorphic addition is

614

|𝑚𝑚1 + 𝑚𝑚2 + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2ℎ + 𝑟𝑟′1 + 𝑟𝑟′2ℎ)| ≤ |𝑚𝑚 + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2ℎ)| + |𝑚𝑚 + 𝑝𝑝(𝑟𝑟′1 + 𝑟𝑟′2ℎ)|
Represent homomorphic multiplication as 𝑐𝑐1 × 𝑐𝑐2 = 𝑚𝑚1 × 𝑚𝑚2 + 𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠, then the noise is

|𝑚𝑚1 × 𝑚𝑚2 + 𝑝𝑝(𝐴𝐴)| ≤ |𝑚𝑚 + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2ℎ)| × |𝑚𝑚 + 𝑝𝑝(𝑟𝑟′1 + 𝑟𝑟′2ℎ)|
According to the change rule of noise above, we know that noise has a linear growth in

homomorphic addition, but has a square growth in homomorphic multiplication. It is showed that the
noise increases much more rapidly in homomorphic multiplication than in homomorphic addition.
Therefore, the factor impacting scheme’s evaluation ability is mainly the degree of polynomials or the
depth of the multiplication of circuit. Since decryption will be incorrect once the noise exceeds the
threshold value, noise reduction is required to achieve fully homomorphism. Gentry gives a method
that can refresh the ciphertext, that is, Recrypt algorithm, detailed in Reference [3].

The degree of evaluable polynomial in the scheme is analyzed here. According to the definition of
noise, the noise |𝑚𝑚 + 𝑝𝑝(𝑟𝑟1 + 𝑟𝑟2ℎ)| ≤ 2𝜀𝜀 + 2ξ(2𝜌𝜌′ + 2𝜌𝜌′) ≈ 2ξ+𝜌𝜌′+1. Set circuit C be the circuit to be
evaluated, then it can be expressed as a function 𝑓𝑓 with 𝑔𝑔-variable and 𝑑𝑑-degree, for given plaintexts
𝑚𝑚1,𝑚𝑚2,⋯ ,𝑚𝑚𝑔𝑔 and corresponding cipertxets 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑔𝑔 , the value range of function 𝑓𝑓 with
𝑔𝑔-variable and 𝑑𝑑-degree can be measured with an elementary symmetric polynomial.

|𝑓𝑓�𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑔𝑔�| ≤ 𝐶𝐶𝑔𝑔𝑑𝑑𝑀𝑀𝑑𝑑 ≤ 𝑔𝑔𝑑𝑑𝑀𝑀𝑑𝑑
In which 𝑥𝑥𝑖𝑖 ≤ 𝑀𝑀.
Set xi = mi + p(r1i + r2ix) ， then M~2ε+ρ′+1, s~2η ， with M~2ε+ρ′+1~2α’（ρ’+2） , we

get ξ~(α’ − 1)ρ’, in which α’ is a constant.
Therefore, the degree of evaluable polynomial needs to meet the following conditions.

d ≤
α’(η − 4)

α’(ρ’ + 2) + log g

B. FHE scheme
We have analyzed the variation of the noise after operation above. Since noise increases

continuously after homomorphic operation and will eventually lead to the incorrect decryption of
ciphertext, Gentry’s Recrypt algorithm is applied to solve this problem. However, the application has
an important prerequisite that the decryption circuit must be an evaluable circuit, that is, the degree of
the decryption circuit must be less than the degree of evaluable polynomial. According to the
parameters setting in this section, the maximum degree of evaluable polynomial in this somewhat
scheme is αλεlog2λε, when α is a constant.

Having known the maximum degree of evaluable polynomial, we need to calculate the degree of
decryption circuit and determine whether the latter is less than the former. The scheme will be
bootstrappable if the answer is yes, and will also be a FHE scheme according to the following
theorem, otherwise we need to squash the decrypt circuit.

Theorem 4.1 [2]. Any one of the bootstrappable homomorphic encryption schemes can be
transformed into a full homomorphic encryption scheme.

We round up and adjust the result by judging its sign when deal with the decrypt circuit. Thus, the
decrypt circuit above is decomposed into

𝐷𝐷𝐷𝐷𝐷𝐷（𝑐𝑐,𝐾𝐾𝑠𝑠 ） = (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠)𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 = (𝑐𝑐 − 𝑠𝑠⌊𝑐𝑐/𝑠𝑠⌉)𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
Since 𝑠𝑠 = 𝑝𝑝𝑝𝑝 + 1, there is 𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 = 1, so the circuit is changed into

𝐷𝐷𝐷𝐷𝐷𝐷（𝑐𝑐,𝐾𝐾𝑠𝑠 ） = (𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠)𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 = (𝑐𝑐 − ⌊𝑐𝑐/𝑠𝑠⌉)𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
It is notable that the decryption circuit is very complex, mainly due to the large amount of

calculation on ⌊𝑐𝑐/𝑠𝑠⌉, and the amount of calculation on 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is negligible because p is small. The
complexity of the decryption circuit depends on the modular operation inside. c/s can be expressed
as c × s−1, then it can be transformed into multiplication of two N-bits integers. According to the
existing conclusion in [14]

Performing multiplication of two N-bits integers is equivalent to finding the sum of 𝑛𝑛 binary
numbers, the result can be expressed as a quadratic polynomial of the input bit length.

By applying Gentry’s “three-for-two” method, sum of 𝑛𝑛 binary numbers can be transformed into
sum of 2 binary numbers after log3/2 n operations. Then finding sum of 2 n-bits integers need n times

615

of operations. Therefore, the result polynomial of the input bit length is at most 2 ∗ 2𝑙𝑙𝑙𝑙𝑙𝑙3/2 𝑛𝑛 ∗ 𝑛𝑛 =
2 ∗ 2(𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛)/(𝑙𝑙𝑙𝑙𝑙𝑙 3−𝑙𝑙𝑙𝑙𝑙𝑙2) = 2 ∗ 𝑛𝑛1/(𝑙𝑙𝑙𝑙𝑙𝑙3−𝑙𝑙𝑙𝑙𝑙𝑙2) ∗ 𝑛𝑛 ≈ 2 ∗ 𝑛𝑛1.71 ∗ 𝑛𝑛 = 2𝑛𝑛2.71 degree.

Note that 1/𝑠𝑠 needs to keep the 𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠 bits of precision to ensure the correctness while
calculating 𝑐𝑐/𝑠𝑠 . So the final degree of 𝑐𝑐/𝑠𝑠 is 2𝑙𝑙𝑙𝑙𝑙𝑙2.71 𝑠𝑠 ≈ 2(𝜆𝜆𝜀𝜀2)2.71 = 2𝜆𝜆𝜀𝜀5.42 , which obviously
exceeds the degree of evaluable polynomial, i.e., the decryption circuit is not included in the
permitted circuit because of its complexity. The too large calculated amount of c/s is the root cause,
so we need to solve the problem by dealing with the decryption circuit. The same method to squash
the decryption circuit as in document [10] is applied here so that the degree of decryption polynomial
is less than evaluable polynomial.

We need to introduce some other parameters to accomplish the squash.
𝜅𝜅 = 𝛾𝛾𝛾𝛾

𝜌𝜌′
,Θ = 𝜔𝜔(𝜅𝜅 log 𝜆𝜆𝜀𝜀),𝜆𝜆′𝜀𝜀 = 𝜆𝜆𝜀𝜀 , 𝜅𝜅′ = 𝛾𝛾𝑘𝑘′/𝜌𝜌′.

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝜀𝜀. Choose at random a prime number 𝑡𝑡 ∈ [2𝜂𝜂−𝜉𝜉−1, 2𝜂𝜂−𝜉𝜉), compute 𝑠𝑠 = 𝑝𝑝𝑝𝑝 + 1, and set
the secret key K𝑠𝑠 = 𝑠𝑠 if 𝑠𝑠/2 is still a prime number, or, rechoose 𝑡𝑡 until satisfying this constraint.
Generate the public key 𝐾𝐾𝑝𝑝 = (𝑁𝑁, 𝑥𝑥) as above. Set 𝑥𝑥𝑠𝑠 = [2𝜅𝜅/𝑠𝑠], choose at random a 𝛩𝛩-bit vector 𝑠𝑠��⃗ =
(𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠Θ) with Hamming weight 𝜃𝜃, and get a set 𝑆𝑆 = {𝑖𝑖|𝑠𝑠𝑖𝑖 = 1} based on 𝑠𝑠，then the number of
non-zero elements in S is λ’𝜀𝜀.Choose at random integers 𝑢𝑢𝑖𝑖 ∈ Ζ⋂(0, 2𝜅𝜅+1), 𝑖𝑖 = 1, . . . ,𝛩𝛩, subject to
the condition that ∑𝑢𝑢𝑖𝑖 = 𝑥𝑥𝑝𝑝(𝑚𝑚𝑚𝑚𝑚𝑚 2𝜅𝜅+1)，and let 𝑦𝑦𝑖𝑖 = 𝑢𝑢𝑖𝑖/2𝑘𝑘, 𝑦⃗𝑦 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦Θ}, in which

�� 𝑦𝑦𝑖𝑖
𝑖𝑖∈𝑆𝑆

�
𝑝𝑝

= ��
𝑢𝑢𝑖𝑖
2𝜅𝜅𝑖𝑖∈𝑆𝑆
�
𝑝𝑝

= [(� 𝑢𝑢𝑖𝑖)/2𝜅𝜅
𝑖𝑖∈𝑆𝑆

]𝑝𝑝 = [(𝑥𝑥𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 2𝜅𝜅+1)/2𝜅𝜅]𝑝𝑝

= [([2𝜅𝜅/𝑠𝑠] 𝑚𝑚𝑚𝑚𝑚𝑚 2𝜅𝜅+1)/2𝜅𝜅]𝑝𝑝 = [(2𝜅𝜅/𝑠𝑠) 2𝜅𝜅]𝑝𝑝 = [1/s]𝑝𝑝 = (1/𝑠𝑠) − |∆𝑠𝑠|
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝜀𝜀 . Generate the ciphertext 𝑐𝑐∗ from plaintext 𝑚𝑚 as before. Then for 𝑖𝑖 = 1,2, … ,Θ ,

let 𝑧𝑧𝑖𝑖 ← [𝑐𝑐∗ × 𝑦𝑦𝑖𝑖]𝑝𝑝, keeping only 𝑛𝑛 = ⌊𝑙𝑙𝑙𝑙𝑙𝑙 Θ⌉ + 3 bits of precision after the binary point for each 𝑧𝑧𝑖𝑖,
output 𝑐𝑐 = (𝑐𝑐∗, 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧set).
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝜀𝜀. Output 𝑚𝑚′ ← [𝑐𝑐∗ − �∑ 𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖Θ

𝑖𝑖=1 �]𝑝𝑝 with 𝑐𝑐∗,𝑧𝑧𝑖𝑖 and the secret key 𝐾𝐾𝑠𝑠.
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. For a given circuit 𝐶𝐶𝜀𝜀 , replace the addition and multiplication gates mod 2 in the

original circuit with gates for addition and multiplication mod N, input ciphertexts c1, c2,⋯ , c𝑔𝑔. To
ensure the correctness of decryption after operation, we need to extract the main ciphertext 𝑐𝑐∗ before
entering into the operation gates, get 𝑐𝑐∗′ by refreshing 𝑐𝑐∗, then apply the (integer) addition and
multiplication gates of C𝜀𝜀, output 𝑐𝑐∗′′, and then refresh 𝑐𝑐∗′′ if necessary, repeat this process until all
the operations have been performed, output the result finally.

To reduce the computational complexity better, the decryption algorithm is divided into three steps
according to the method in Reference [10].
 Compute𝑎𝑎𝑖𝑖 = ∑𝑠𝑠𝑖𝑖𝑧𝑧𝑖𝑖;
 Generate 𝑚𝑚 + 1 rational numbers based on λ’𝜀𝜀 rational numbers {𝑎𝑎𝑖𝑖}𝑖𝑖=1Θ in the previous step;
 Compute and output c∗ − ∑𝑤𝑤𝑗𝑗.
The degree of polynomial in the three steps above is analyzed as follows.
 The degree of polynomial that correspond to Step 1 is 2.
 The degree of polynomial that correspond to Step 2 is λ’𝜀𝜀.
 Step 3. The degree of ∑𝑤𝑤𝑗𝑗 is 32 𝑙𝑙𝑙𝑙𝑙𝑙2 𝜆𝜆𝜀𝜀, let λ𝜀𝜀 = λ’𝜀𝜀, then the degree of decryption circuit is

approximately 2λ’𝜀𝜀 ∙ 32 log2 λ𝜀𝜀 = 64λ𝜀𝜀 log2 λ𝜀𝜀, and the degree of corresponding extended decryption
circuit is approximately 128λ𝜀𝜀 log2 λ𝜀𝜀. Since 𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔 is very small for 𝜂𝜂, it can be ignored. To make
sure that the decryption circuit is evaluable, there must be

128λ𝜀𝜀 log2 λ𝜀𝜀 ≤
η − 4
ρ′ + 2

Let η = ρ′ ∙ 128λ𝜀𝜀 log2 λ𝜀𝜀, then the scheme can evaluate polynomials of degree up
to 128λ𝜀𝜀 log2 λ𝜀𝜀 ≤ (η − 4)/(ρ′ + 2). At this point, the decryption circuit belongs to permit circuits,
and the scheme above is bootstrappable. According to theorem 4.1, this scheme can be transformed to
a homomorphic encryption scheme, then we have the FHE scheme over 𝐹𝐹𝑝𝑝.

616

Verification of the Encryption Scheme.In order to verify the scheme above, a decimal number is
encrypted and then recover from the ciphertext. Decimal number 1001, for example, 1111101001 in
binary, needs to be encrypted 10 times according to the scheme Reference [10], while only one
encryption is taken in this scheme. Let 𝑝𝑝 = 2237, then the public key is

N=176065201490437834028558746467531808290665332054504591589017047515976152491
97353149899958895890552932849583770786598984178260019980170567429495495967142586
0171460541 1533449397790981301697489597186376681067317951

z=261289035462370819399874365778192013946697495748967925881140723897132381152
42223578011667810307680396829014954348356462440569704488538007028071042200182718
58227596157302266000174291308431407162502577654871223833649473020586289470852505
41050929643315183278848130157703898606944055082083738990470182127059262996457900
40528492576337370482514169101113899347508513314932528661692088608813284577295042
53019447791326354975770486039665470004054148999016067848652149072109637141345285
64161792703122645097111685183809791282979331980968121266096538997158609067875132
06321226622189427264218397227426981703422922265651506849294989206569966446837375
58331267980438206715933330828892571622468409053593884473296077416018502651726854
10559995984974741442165353979810181963024152204823297854164762009593678731061806
96278886387803774231310458071541009071678785426526099966351799288251907693025554
218149527764605748857407612855494825818653506331762473279897868072

The ciphertext corresponding to 1001 is
c=689947529242732533296416753279087811506227168592870446462867888441844102636

77796805088220806096787306811307736763018195254474182245382917288187699105463178
016846929583632450115010255954968284252339100322660585

The required time for encryption is 0.008 seconds, and the decryption time is 0.002 seconds. If we
apply the scheme in literature [10], the ciphertext size will be 10 times of 𝑐𝑐, while the encryption time
is about 10 times long as here, so we consider that the scheme has advantages on ciphertext size and
the encryption and decryption time to the scheme in literature [10]. Data experimental environment in
this section:
𝑐𝑐 + + 6.0 with NTL library
64-bit operating system
Installed memory (RAM):4.0GB
Processor: Intel® Core(TM) i5-2320 CPU @3.00GHz.

Conclusion
For cloud hosting of bank data and other application scenarios, this paper presents an improved

scheme based on the DGHV scheme, which expands the plaintext space from prime field 𝐹𝐹2 to 𝐹𝐹𝑝𝑝,
and promotes the practicality of FHE. It is proved that the proposed scheme can correctly encrypt and
decrypt data, and is more efficient than the existing DGHV scheme.

References

 [1] Brenner M, Wiebelitz J, Von Voigt G, et al. Secret program execution in the cloud applying
homomorphic encryption[C]// Digital Ecosystems and Technologies Conference (DEST), 2011
Proceedings of the 5th IEEE International Conference on. IEEE, 2011:114-119.

[2] Gentry C. A fully homomorphic encryption scheme[J]. Dissertations & Theses - Gradworks,
2009.

[3] Gentry C. Fully homomorphic encryption using ideal lattices[C]. Proc of the 41st Annual ACM
Symposium on Theory of Computing. New York: ACM Press,2009:169-178.

[4] Brakerski Z. Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP[M]// Advances in Cryptology – CRYPTO 2012. Springer Berlin Heidelberg, 2012:868-886.

617

[5] Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings[C].
Proc ofthe 29th International Conference on Theory and Application of Cryptographic
Techniques．Berlin:Springer,2010:1—23．

[6] Craig Gentry, Shai Halevi. Implementing Gentry’s Fully-Homomorphic Encryption Scheme[C]//
International Conference on Theory and Applications of Cryptographic Techniques: Advances in
Cryptology. Springer-Verlag, 2011:129--148.

[7] Ogura N, Yamamoto G, Kobayashi T, et al. An Improvement of Key Generation Algorithm for
Gentry’s Homomorphic Encryption Scheme[M]// Advances in Information and Computer Security.
Springer Berlin Heidelberg, 2010:70-83.

[8] Chen Y, Nguyen P Q. Faster Algorithms for Approximate Common Divisors: Breaking
Fully-Homomorphic-Encryption Challenges over the Integers[M]// Advances in Cryptology –
EUROCRYPT 2012. Springer Berlin Heidelberg, 2015:502-519.

[9] Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) Fully Homomorphic Encryption without
Bootstrapping[J]. Acm Transactions on Computation Theory, 2011, 18(3):169--178.

[10] VanDijk M，Gentry C，Halevi S，et al．Fully homomorphic encryption over the Integers[C].
Proc of the 29th International Conference on Theory and Application of Cryptographic
Techniques．Berlin：Springer，2010:24—43．

[11] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, A. Yun: Batch Fully
Homomorphic Encryption over the Integers. In: EUROCRYPT 2013,LNCS 7881, pp.315-335, 2013.

[12] JeanSébastien Coron, Avradip Mandal, David Naccache, et al. Fully Homomorphic Encryption
over the Integers with Shorter Public Keys[C]// Conference on Advances in Cryptology.
Springer-Verlag, 2011:487--504.

[13] Howgrave-Graham N. Approximate Integer Common Divisors[M]// Cryptography and Lattices.
Springer Berlin Heidelberg, 2001:51-66

[14]. TANG Dianhua, ZHU Shixiong, CAO Yunfei. Faster fully homomorphic encryption scheme
over integer. Computer Engineering and Applications, 2012, 48（28）：117-122.

618

