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ABSTRACT: In this paper, we study the solutions for the fractional boundary value problem 
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(0) 0, (1) 0,
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tD u t g t f u t t

u u

α + = ∈


= =
 (1), where1 2α< <  is a real number. Define a new cone to 

solve the difficulty. And investigate solutions for the problem (1) with a sign-changing Green’s 
function. And will research the sign-changing solutions. 

1 INTRODUCTION 

In these years, more and more authors study the fractional boundary value problems. In [1], the 
author consider the problem  
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and 2 3,0 2, cDαα λ< < < <  is the Caputo fractional derivate. 
These papers are achieved when the corresponding Green’s function are nonnegative, the ques-

tion is that if the Green’s function changes sign, how we study the problem. In [8], the author con-
sider the problem with a sign-changing Green’s function, the author define a new cone to solve the 
difficulty.  

This paper will investigate solutions for the problem (1) with a sign-changing Green’s function. 
And will research the sign-changing solutions. 

2 PRELIMINARIES 

For the BVP 
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we have the following details. 
From the definition of Caputo fractional derivate we know u  is a solution of  
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If we choose 
2 1 1, ,
3 4 2

s tα = = =
 we can know that the (3) changes sign.  
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We define 
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, In order to use the cone theories, we need to define a new cone in 
E . 
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The  operators , ,K F A  are as follows 
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( ) 0 03  ( ) ( ( )) ( )C  for all  with  C .H g s f u s u uα< G ≤   

Lemma 2.1 Suppose that ( )0H  and ( )1H  hold, 

then the operator :A P E is completely continuous and :A P P  .  
 
Proof  In case of 0,G ≥ we have ( )( ) 0,Au t ≥  
in case of 0,G < we have 
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On the other hand, 
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Then the lemma is proofed. 
Lemma 2.2 Suppose that ( )0H  holds, then the ope- 

rator A  is Frechet differentiable at  and θ ∞ , and 
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This means 0'( ) .A Kθ β=  
We can prove ' ( )A Kβ∞∞ =  as the same way. 

Lemma 2.3  Let β  be a positive number, then the  
sequence of the positive eigenvalues of the operator 

Kβ  is 
1 2

...
nα
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(1)
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β
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Proof  From reference [6], we know that 1
λ

 is the positive eigenvalue of the operator K  if and 

only if ,2 ( ) 0Eα λ− = . Therefore, the eigenvalue of the operator Kβ  is  
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From the Laplace transform, 
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. 

1 (1)
,2 ,2( ) '(0) ( ) ( )n n nu t u tE t C t E tα α α
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Let (1) 0,u =  then we get (1)
,2 ( ) 0.nEα λ− =  Which is a contradiction.  

Then the lemma is proofed. 

Lemma 2.4 Suppose that ( 2)H  holds, \{ }u P θ∈  is a solution of ( )1 , then  u P∈


.  
Proof: ( )u t is a concave function, (0) 0, (1) 0,u u= =  
so we have 

'(0) 0,  ( )  0.u u t> ≥  
From '(0) 0u > we know 10, 0ε τ∃ > > , 
              1'( ) ,u t τ>  [0, ].t ε∀ ∈               
From ( ) 0u t ≥ , we know 2 0τ∃ >  
              2( ) ,u t τ>  [ ,1].t ε∀ ∈                      
令 1 2min( , )τ τ τ= ，then  

( ) 0,x t ≥ [0,1].t∈   

So ( , ) , .B u P u Pτ ⊂ ∈


 
Lemma 2.5 Suppose that ( 0)( 2)H H  hold, then 
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(1) there exist 0 0 0C r> >  such that 00 r r∀ < ≤ ,  
( , ( , ), ) 0, ( , ( , ), ) 0;(4)i A P B r P i A P B r Pθ θ∩ = − ∩ − =  (2)there exist 0 0R C>  such that 0R R∀ ≥ , 
( , ( , ), ) 0, ( , ( , ), ) 0;(5)i A P B R P i A P B R Pθ θ∩ = − ∩ − = Proof  We only proof (4), By( 0)H we know 

 
By  lemma 2.1 and lemma 2.2 we know  

0 0

1 1

( 1)β β
λ λ

>  

is the eigenvalue of 0Kβ , and the corresponding eigenfunction is 

,2 1( ) ( ),u t CtE tαα λ= −  

The smallest zero of ,2 ( ) 0E xα − = is 1λ  , 

,2 1( ) 0, (0,1).E t tα
α λ− ≠ ∀ ∈  

We can choose the suitable C to ensure ( ) 0.u t ≥   
By the lemma in [2] we know (4) is proofed. 

3 PROOF OF MAIN RESULT 

Theorem 3.1 Suppose that ( 0) ( 3)H H−  hold. And (1)
,2 ( ) 0,nEα λ− ≠  where 0 11, 2,...max(2 ,2 )n n n= , 

then (1)  has at least two sign-changing solutions. 
 
Proof By( 3)H , we have  
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have 1 00 r r∃ < <  such that 
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Similarly, by lemma2.3, lemma2.8 and ( 2)H , 1 0R R∃ ≥  such that  
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By lemma 2.5, we have 
1

1

( , ( , ), ) 0,                                        (10)
( , ( , ), ) 0,                                       (11)

i A P B r P
i A P B R P

θ
θ

∩ =
∩ =

By (6)(10)(11), we have  

1 0

0 1

( , ( ( , ) \ ( , )), ) 0 1 1,       (12)

( , ( ( , ) \ ( , )), ) 1 0 1,           (13)

i A P B R B C P

i A P B C B r P

θ θ

θ θ

∩ = − = −

∩ = − =
  

A  has at least two fixed point 
1 1 0

2 0 1

( ( , ) \ ( , )),

( ( , ) \ ( , )).

u P B R B C

u P B C B r

θ θ

θ θ

∈ ∩

∈ ∩
  

1 2 and u u  are two positive solutions of (1), and  

1 1 0 2 1r u C u R< ≤ < ≤ . 
Similarly, we get (1) has two negative solutions 

3 1 0 ( ( , ) \  ( , )),u P B R B Cθ θ− ∈ ∩  
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4 0 1 ( ( , ) \  ( , )).u P B C B rθ θ− ∈ ∩  
And  1 3 0 4 1r u C u R< ≤ < ≤  
By lemma2.4, and lemma in [13], there exist four open subsets 1 2 3 4, , ,O O O O  of E  such that 

1 1 0

2 0 1

( ( , ) \ ( , )),

( ( , ) \ ( , )) ,   

O P B R B C

O P B C B r

θ θ

θ θ
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Then 
1 4

2 3

deg( , , ) 1,deg( , , ) 1,        (14) 
deg( , , ) 1,deg( , , ) 1,             (15)

I A O I A O
I A O I A O
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 By (7)(8)(15), we have 

0 2 3 1deg( , ( , ) \ ( ( , )), ) 2 (16)I A B C O O B rθ θ θ− ∪ ∪ = −   By (7)(9)(14), we have 

1 1 4 0deg( , ( , ) \ ( ( , )), ) 2  (17)I A B R O O B Cθ θ θ− ∪ ∪ =  
By (16) (17) we know the problem (1) has two sign-changing solutions. The theorem is proofed.  

3 CONCLUSION 
We research the solutions for the fractional boundary value with sign-changing Green’s function in 
this paper. Define a new cone to solve the difficulty. And investigate solutions for the problem (1) 
with a sign-changing Green’s function. And will research the sign-changing solutions. 
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