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Abstract: Compressive Sampling is suitable for remote hyperspectral imaging, as it can simplify the 
architecture of the onboard sensors. The reconstruction process is an indispensable component of the 
hyperspectral imaging as it decodes the compressive measurements to render a three-dimensional 
spatio-spectral estimate of the scene. The existed reconstruction methods mainly concentrated in 
reducing the algorithm complexity and increasing the reconstruction accuracy, not taking into 
account the sensing paradigm of the onboard sensors, such as compressive whiskbroom imaging. For 
this reason, an improved iterative prediction reconstruction algorithm employing Multi-Task 
Compressive Sensing for compressive whiskbroom imaging is proposed. Experimental results run on 
raw data from AVIRIS confirm the validity of the proposed method. 

Introduction 
Compressive Sampling (CS)[1] is a new signal-acquisition paradigm, which shows that a sparse or 
compressible signal can be recovered from a relatively small number of linear measurements(random 
projections). Therefore, the acquisition presents appealing properties such as simple sampling 
complexity, especially in the applications of resource-constrained, such as the remote acquisition of 
hyperspectral imagery for space-borne and air-borne earth observation. 

In the hyperspectral remote sensing, the image is captured using a range of spectra from ultraviolet 
to visible to infrared, and a three-dimensional spatio-spectral data of a scene is created using light 
from different parts of the spectrum. It is costly for imaging at wavelength outside the visible light, 
where manufacturing detectors is very expensive. CS could be used to design cheaper sensors, or 
sensors providing better resolution for an equal number of detectors. As it is costly to acquire each 
pixel of the hyperspectral imagery, it becomes very attractive to use the CS approach to acquire 
hyperspectral data, which has been called hyperspectral compressive imaging. Hyperspectral 
compressive imaging allow to design sensors requiring a smaller memory buffer, fewer detectors, and 
a reduced volume of data to transmit.  

The reconstruction process is an indispensable component of the hyperspectral compressive 
imaging as it decodes the CS measurements to render a three-dimensional spatio-spectral estimate of 
the scene. The application of CS theory to hyperspectral image acquisition is not straightforward 
mainly due to the complexity and accuracy of the reconstruction stage. Several strategies for 
reconstructing the HSI data from these compressive measurements have been proposed, and the 
reconstruction quality can be improved from intelligent use of prior knowledge about the 
hyperspectral data, such as the redundancy of hyperspectral images in both the spatial and spectral 
dimension. See for example [2], where hyperspectral images is decoded from compressive samples 
by exploiting its spatial 2D piecewise smoothness, low-rank property and adjacent spectrum 
correlation. See [3] for an overview of hyperspectral compressive imaging. In a word, the existed 
reconstruction methods mainly concentrated in reducing the algorithm complexity and increasing the 
reconstruction accuracy, not taking into account the sensing paradigm of the onboard sensors. In the 
moving airplane and satellite platforms, compressive hyperspectral imaging need to design 
compressive sensor based on pushbroom and whiskbroom scanning[4].The reconstruction of 
compressive whiskbroom imaging can be regarded as a multivector CS-recovery problem, so it can 
be solved with the existed CS reconstruction algorithms, such as the Multi-Task Bayesian 
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Compressive Sensing (MT-BCS)[5],which introduces a hierarchical Bayesian framework into the 
CS-recovery problem to share prior information across the multiple vectors. 

In this paper an improved reconstruction algorithm based on MT-BCS is proposed. we consider 
the compressive whiskbroom imaging and investigate suitable reconstruction algorithms that are able 
to take advantage of correlations in the spatial dimensions. The proposed algorithm requires 
separately sensed spectral vectors, which is compatible with the structure of whiskbroom sensors. We 
show that the iterative prediction method is effective at achieving a reconstruction quality better than 
that obtained by the conventional approach. 

Multi-Task Bayesian Compressive Sensing 
CS is a framework whereby one performs linear measurements M∈y  to reconstruct a vector N∈x , 
with the assumption that x is sparse in the basis represented by the matrix N N×∈Ψ . The mapping 
→y x  constitutes an inverse problem, often solved using 1l regularization or related techniques. 

Compressive sensing has been considered from a Bayesian perspective in [6] and the reconstruction 
problem in CS can be solved more effectively by utilizing the relevance vector machine from the 
sparse Bayesian learning literature. 

In the multivector CS-recovery research, if L > 1 sets of compressive measurements 1, ,{ }i i L= 

y are 
performed, each of the associated 1, ,{ }i i L= 

x  can be recovered independently at a time. The mapping 
i i→y x is an independent CS recovery problem, which can be framed as a sparse linear-regression 

problem and solved by a Bayesian algorithm. In many applications the L “tasks” defined by the 
mappings i i→y x  are not statistically independent, and it may be possible to improve the 
performance of the inversion if statistical inter-relationships are exploited. MT-BCS address this 
problem within a multi-task learning setting, wherein the mapping i i→y x  for each task corresponds 
to inferring the parameters (such as wavelet coefficients) associated with the desired signal, and a 
shared prior is placed across all of the L tasks. Under this hierarchical Bayesian modeling, data from 
all L tasks contribute toward inferring a posterior on the hyperparameters, and once the shared prior is 
thereby inferred, the data from each of the L individual tasks is then employed to estimate the 
task-dependent wavelet coefficients.  

Proposed Technique 

We propose a new reconstruction algorithm for compressive whiskbroom imaging, in which each 
spectral vectors is acquired with separate random projections, and the new algorithm reconstruct the 
entire data cube capturing the correlations in both spatial and spectral directions. 

The whiskbroom scan, which is built on the imaging of a single pixel, or spatial location, at a time, 
is a widely used scanning paradigm in hyperspectral remote sensing. A whiskbroom architecture for 
the compressive acquisition of hyperspectral imagery is depicted conceptually in [4].  

We represent hyperspectral images l pN N Nl× ×Χ∈  as a 3D collection of samples, where lN  and 
pN represent spatial dimensions and Nl  represents the spectral dimension. Hence, X  can be 

considered as a collection of l pN N×  spectral vectors , ,: ( 1, , ; 1, , )N
i j l pi N j Nl∈ = =  X .We refer to this 

configuration as Nl − l pN N× cube. 
For what concerns the acquisition of the hyperspectral whiskbroom compressive imaging, it 

consists in the collection of the measurements for each spectral vector , ,:i jX . The measurement process 
of each spectral vector is , ,: , , ,:i j i j i j=Y Φ X , where , ,:

mN
i j R∈Y , and ,i jΦ  is of size mN Nl× . Here each sensing 

matrix Φ  is taken as Gaussian i.i.d. and mN Nl< . For simplicity, the same value mN  is taken for all 
spectral vectors.  

The measurements of all spectral vectors are then collected in the matrix Y . The compressive 
acquisition protocol of the whole hyperspectral data is = ( )ΓY X , where : l p l p mN N N N N Nl× × × ×Γ → 

 is 
determined by the compressive sensor. It is easy to separate reconstruction each spectral vector using 
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common CS reconstruction algorithm. However, the separate reconstruction does not yield a 
sufficiently accurate estimate of the original hyperspectral images, since it lacks exploiting spatial 
correlation. As a matter of fact, this inaccurate reconstruction will be the initialization point of our 
proposed reconstruction algorithm.  

The main concept behind our new reconstruction algorithm is to exploit correlation among the 
spatial directions by iteratively predicting each spectral vector and reconstructing the prediction error 
only, which is more compressible than the spectral vector itself. If the prediction filter is accurate, the 
prediction error is expected to be more compressible than the full signal, and the reconstruction will 
yield better results[7].If a prediction of the hyperspectral data , ,:i jX  is obtained, e.g., applying the 
operator P(·,·) to vectors -1, ,:i jX  and , -1,:i jX  of some initial reconstruction, then we can cancel out the 
contribution of this predictor from the measurements of , ,:i jX , and reconstruct only the prediction 
error instead of the full spectral vector.  

Prediction/reconstruction techniques have also been considered in [8,9] for different applications. 
In particular, the iterative procedure starts from the initial reconstruction (0)

, ,:i jX  of all spectral vectors. 
The initial reconstruction can be solved with the well known 1l -norm convex regularizer algorithm:  

(0)
, ,: , ,: , , ,: , ,:1

arg min s.t.i j i j i j i j i j← =X ΨX Φ X Y                                                                                    (1) 
where Ψ can represent a wavelet basis, with the wavelet decomposition the wavelet coefficients are 
sparse. 

In this paper, for every spectral vector we obtain its prediction from the adjacent spectral vectors at 
previous iteration. For the sake of simplicity, we take the mean data of the left front vector and left 
upper vector. The proposed iterative reconstruction algorithm is shown here: 
Algorithm 1: 
Require: 
Ensure: the estimation X  
 1:for 1i =  to lN   do 
 2:   for 1j =  to pN  do 
 3:   (0)

, ,: , ,: , ,: , ,:1
arg min s.t.i j i j i j i j← =X ΨX ΦX Y  

 4:   end for 
 5:end for 
 6: 0n ←  
 7:repeat 
 8: 1n n← +  
 9: for 1i =  to lN   do 
10:   for 1j =  to pN  do 
11:   ( 1) ( 1)

, ,: 1, ,: , 1,:( )n n
i j i j i jp − −

− −=X X X，  
12:   , ,: , , ,:i j i j i j= Φ Y X  
13:   , ,: , ,: , ,:

y
i j i j i j= − E Y Y  

14:   end for 
15:end for 
16: _ ( , )X yMT BCS= ΓE E  
17: ( )n X= + X E X  
18:until Convergence is reached 
19:return ( )nX  
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Experimental Results 
Traditional hyperspectral sensors that use whiskbroom scanning include AVIRIS, which is a 
spectrometer with 224 bands, and the size of the image is 512 lines and 680 pixels. Our simulations 
are mainly based on the scenes of Cuprite from AVIRIS. The corresponding hyperspectral images is 
cropped to have the spatial resolution 256× 256, and in addition B = 180 spectral bands is selected 
after discarding water absorption bands. 

As a primary measure of reconstruction quality, we calculate SNR averaged over all the bands 
under consideration. we compare our method with two other methods: the l1 algorithm separately 
applied on each spectral vector, and the MT-BCS method proposed in [5].The SNR performances at 
different measurement rate for the test data are shown in Figure 1. It can be observed that the SNR of 
the proposed method significantly outperforms the other two methods. 

              
Fig. 1 Comparison of SNR performance (left:The  first scene of Cuprite, right:The second scene 

of Cuprite) 
 

Figure 2 shows the visual quality of the reconstructed images using three different methods when 
measurement rate is 0.1. Obviously, the proposed method preserves image semantics much better 
than the image recovered by the other two methods via recovering edges and textures more faithfully. 

 
 

 
Fig. 2 The reconstructed second scene of Cuprite when the measurement rate is 0.2 (upper left: the 
original imageof the 80-th spectral band, upper right: reconstructed by 1l , bottom left: reconstructed 

by MT-BCS, bottom right: reconstructed by the proposed method) 
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Conclusions 
In this paper, we proposed an improved algorithm for the reconstruction of hyperspectral images in 
compressive whiskbroom imaging. In the acquisition of compressive measurements, spectral vector 
is separately acquired using compressive sampling, in the same way as actual satellite whiskbroom 
sensors operate. The reconstruction relies on the MT-BCS and a progressive refinement based on 
linear predictors to jointly process the measurements of each spectral vector, in order to exploit both 
spectral and spatial correlation at the same time. Experiments run on AVIRIS images show that the 
number of measurements required for the HSI reconstruction is significantly reduced comparing to 
the other conventional methods.  
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