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Abstract. Using the modern time-series analysis method in the time domain, based on the
autoregressive moving average (ARMA) innovation model and white noise estimator, non-regular
descriptor discrete-time stochastic linear systems are researched. Under assumption 1~3, an
asymptotically stable reduced-order Wiener state estimator for descriptor systems is given by using
projection and block matrix theories. Non-regular descriptor systems include general descriptor
systems in them. And the algorithm is reduced-order. It avoids the solution of the Riccati equations
and Diophantine equations. So that it reduces the computational burden, and is suitable for real time
applications.

Introduction

Descriptor systems are often seen in such fields as circuit, economics and robotics, thus receiving
more and more attention. In recent years, a number of very useful research results have been obtained
in terms of regular descriptor systems [1~4]. However, research on non-regular descriptor systems is
still lacking. In this paper, based on ARMA innovation model and white noise estimators, Wiener
state estimators for non-regular descriptor systems are presented by using modern time series analysis
method [5] and block matrix theory [6,7]. The presented Wiener state estimators have more universal
significance since they can be applied to both non-regular and regular descriptor systems.
Consider the discrete time descriptor stochastic system

MX(t +1) = @x(t) + TW(t), (1)

y(t) = Hx(t) +v(t), )
where the state x(t) € R", the measurement y(t) e R™, w(t) e R?, v(t) e R™, constant matrices
M. &. I and H are respectively pxn, pxn, pxq and mxn,and n>m.

Assumption 1. w(t) and v(t) are correlated white noises.
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where E is the expectation, T denotes the transpose, o, =1, 6, =0(t # j), S = E[w(t)v (t)] is the

correlation matrix.
Assumption 2. H can be representedas H =[1, O, ]

Assumption 3. The system is completely observable, that is, Vz € C, we have

{ZM —(p} [M}
rank =n, rank =n. 4
H H

M, @, x(t) can be divided into the following form
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X({t)| m
M=[M, M, @=[@, &, x(t)=| " : 5
My MiJ, @=[2; 2], X0 [Xz(t)}n_m ©)
Substituting it into (1), (2) yields
(t+1) X, (t)
[Ml M, % :[¢1 D, ' +IW(t), (6)
X, (t+1) X, (£)
xi(t)}
y(®) =1l 0{ +V(t). ()
| | X, (t)
That is
M, X, (t+1) + M, X, (t +1) = D%, (t) + D, X, (t) + TW(t) , (8)
y(t) = x,(t) +v(t) . (9)
Lemma 1. M, is full column rank matrix, that is rank(M,) =n—-m.
Proof. According to Assumption 3, n = rankPH/| } = rankﬁ/Il MOZ} ,then rank(M,)=n—m.
From Lemma 1 we know, M, = (MZTMZ)&MZT is existed and premultiplying (8) by it yields
X(t+1)=M,@x(t) + M, D,x,(t) + M, Tw(t) - M, M x (t+1). (10)

Formula (9) can be rewritten as x,(t) = y(t) —v(t), substituting it into (10) yields the state equation of
X, (t)

X, (t+1) = M@, (1) + M TW(t) = M7 (M, — @) y(t +1) + M; (M, - q"@,)v(t +1). (11)
Substituting (10) into (8) yields

M (t+1) + M,[M; @ %, (t) + M@, %, (1) + My TWw(t) — M, M, x (t +1)]

= DX (1) + D, X%, (1) + TW() . (12)
Let (I, —M,M;) = E, then (12) can be simplified to

E(M, —q @), (t +1) = E@,x, (t) + ETW(t). (13)
Substituting x,(t) = y(t) —v(t) into (13) yields the observation equation of x,(t)

E(M, —q7'@,)y(t +1) = E®,X,(t) + E/W(t) + E(M, — g~ '@ )v(t +1). (14)
Lemma 2. System (11), (14) is completely observable, that is, (M, ®,, E®,)is a completely
observable pair.

. . M - . M, -®, M, -
Proof. According to Assumption 3, rank{ H }:n , that is rank[ ll ' 20 2}

then rank[zM, —@,]=n-m, so
21, —M,® lhw O |21, ,—-M,@ 21, —M,®
rank| ~ """ 2 7?%|=rank e G
E®, M, -1, EA, M, — @,
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:rank{w:z}[zMz—cbz]zrank[zMz—qﬁz]:n—m. (15)

ARMA innovation model
Substituting (11) into (14) yields

P(@)(M, —@,g7)y(t+1) = P(q)7W(t) + P(q™) (M, - @,g ™ )v(t +1), (16)
where g is the backward shift operator, and P(q™") = E[I, + @,(I,_, —q"'M,; @,) "M, ].
Formula (16) can also be rewritten as

P(q)(M, —@,q7)y(t) = P(@) /g w(t) + P(q)(M, —@,q )v(t), (17)

Introducing the left coprime factorization

[P(@) 74", P(@) (M, -@,q )= (g )[B(a)a", C(q )], (18)
where A(Q@') , B(q') and C(q') are polynomial matrices having the form

X =X(@™") =X+ X, g+ 4+ anq‘”* , X, are the coefficient matrices and n, is the degree of X .
We define X; =0 (i>n,),and A, =1, B,=0, C, =0, ¢ isan integer.

Substituting (18) into (17) yields the ARMA innovation model

C(a7)y(t) = D(a )e(t) (19)

D(@™)e(t) =a"B(a " )w(t) + C(q V(1) (20)
where D(q™) is a stable polynomial matrix, D, = I,, &(t) e R” is the white noise with zero mean
and variance matrix Q,. D(q™) and Q, can be obtained by using the Gevers-Wouters algorithm [5].
According to (19), the innovations ¢(t) can be computed recursively as

e(t) =C(q7)y(t) - De(t-1)—---—D, e(t—n,), t=ny,n, +1,------ : (21)
with the initial values ((0), ------ , €(ny —1).

From formula (19), (20) and document [5], we have

Lemma 3. System (11), (14) is completely observable, that is, (M, ®,, E®,)is a completely

observable pair.
For the descriptor system (1) and (2), under Assumptions 1~3, we have the following white noise
estimators which have the wiener filter form

Wit |t+N)=LY"CD y(t+N) 2
Ut [t+N)=L,CDy(t+N)
where C, D are given by (19) and C, D are determined by the left coprime factorization as
D'C=CD", (23)
where D, =1, for N <—(z v 0), we define that Ly, =0, Ly =0, for N > —(z v 0) we define
N . N .
L= 2™, L= X 1'QMq™, (24)
i=—(rv0) i=—(zv0)
and (z v 0) =max(z,0), while
{Hiw = Qw FiI(TVO) + SGiI—(rvO) (25)
Hiv = QVGi-Er(T\/O) + STFiI(TVO)

where F, and G, can be computed recursively as
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{Fi = _DlFi—l T Dnd I:i—nd + §|

. = . (26)
F=0(<0),B =0(i>n.)
{Gi :_DlGi—l_'”_Dn Gi—n +c_:i
o 27)
G, =0(i<0),C, =0(i>n,)

where we define B =Bq™?, C =Cq“™™?, (r A0) =min(z,0), (-7 A0) =min(-z,0) .

Wiener State Estimators

Consider the system (11) and (14), according to (M,®, , E®, ) is a completely observable pair,
then there exists an (n—m)xp matrix T, such that M,®,+T,E®, is nonsingular [6].
Premultiplying (14) by T,, and adding it with (11) yield

X, (t+1) + (M +TE)M, —q'@)[y(t +1) —v({t +1] - (M; +T,E)Tw(t)

:(M;@2+T0E¢2)Xz(t)- (28)
Let ¥ =M, @, + T,E®,, we know ¥ is existed, then the equation (28) can be rewritten as
X, (1) =% 7%, (t+1) + F[y(t +1) — v(t + 1] - Fw(t), (29)

where &, =¥ (M, +T,E)(M, -q'®,), ¥, =¥ (M, +T,E)I".
From (14) and (29), we have

[ EQ,

Eo,¥™
: X2 (t) =

Eo,(¥ )

i E(M, —q'@)[y(t +1) —v(t +1)]— E/w(t)

E(M, -@,# -q"'@)[y(t) - V()] - E(/" - @,%,)w(t -1)

: (30)
|E(M,~ @, —q"'@)[y(t— B +2) ~V(t— f+2)]-E(I ~D,#,)w(t - S +1)
where £ is the observability index.
Let
Eo,
Eo,¥™
- FT (31)
Ea, ()"

It can be proved similarly to Lemma 2 that (¥, E®, ) is a completely observable pair according
to (M,®,, E®,) is completely observable, then @ is full column rank matrix, that is,
O" =[@'O]"O" is existed.

©®" can be divided into

o'=le, o - 0, (32)
where @, (i=1,2,---f-1) are (n—m)x p matrices.

Premultiplying (30) by @ yields the non-recursive state expression

X, (1) = O{E(M, —q"'@,)[y(t +1) - v(t +1)] - ETW(t)}
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B-1
+ > O{EM, - @, —q D) [y(t +1-i) - v(t +1-i)] - E(/" - @, )w(t - i)}, (33)
i=1
Taking the projection operation for (33) yields
X(t[t+N)=0{EM, —q'@)[y(t+1) —V(t +1|t+ N)]- E/W(t|t+ N)}

p-1
- Z@i{E(M1 ~ D, —q D)yt +1-i) -Vt +1-i|[t+ N)]|-E( - D, ¥ )W(t—i|t+N)}, (34)
i=1
where N >1.
Substituting (22) into (34) yields

_— —_— p-1
X,(t|t+N) = OE(M, - @)[y(t +1) - L\ CDy(t + N)] - E/LYCD y(t + N)} + >0, x
i=1
{E(M, -, —q"'@)[y(t +1-i) - L', ,CDYy(t+ N)] - E(/" - @,%,)L" ,CD'y(t+ N)}, (35)

that is
X, (t[t+N)={6,E[(M,-q"'@)(q" "D - L}_,C) - IL}C]

p-1 _ ~ ~ o~
+ Z_:,@iE[(Ml 0, -q ' @)(q " "'D-L,,C) - (I -2, \CI}Dy(t+ N). (36)
Let
K = O,E[(M, - q'®,)(g" "D - L}, ,C) - ILyC]
B-1 . ~ ~
+ ;@iE[(Ml — 0¥, -q7)(q " D - L, .C) - (I - 2,1, C]. 37)
then
%(t]t+N)=K@D y(t+N) (N >1). (38)
In addition, from (9) we have
%, (t]t+N)=y()—V(t|t+N). (39)
Substituting (22) into (39) yields
% (t|t+N)=(q"D-L,C)D y(t+N). (40)
Let
K®=q"D-L,C, (41)
then
%, (t]t+N)=K®Dy(t+N). (42)

In summary, we can obtain the following theorem by considering the stability of D
Theorem. The non-regular descriptor system (1) and (2) have the asymptotically stable Wiener
state estimator (38) and (42) under Assumptions 1~3.

Conclusion

Using modern time series analysis method and based on ARMA innovation model and white noise
estimators, Wiener state estimators for non-regular descriptor systems are presented in this paper.
The presented Wiener state estimators have more practical value owing to the fact that they include
regular descriptor systems as a special case and use degree reduction algorithm to reduce
computations and avoid solving Riccati equations and Diophantine equations at the same time.
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