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Abstract. Using the modern time-series analysis method in the time domain, based on the 
autoregressive moving average (ARMA) innovation model and white noise estimator, non-regular 
descriptor discrete-time stochastic linear systems are researched. Under assumption 1~3, an 
asymptotically stable reduced-order Wiener state estimator for descriptor systems is given by using 
projection and block matrix theories. Non-regular descriptor systems include general descriptor 
systems in them. And the algorithm is  reduced-order. It avoids the solution of the Riccati equations 
and Diophantine equations. So that it reduces the computational burden, and is suitable for real time 
applications. 

Introduction 

Descriptor systems are often seen in such fields as circuit, economics and robotics, thus receiving 
more and more attention. In recent years, a number of very useful research results have been obtained 
in terms of regular descriptor systems [1~4]. However, research on non-regular descriptor systems is 
still lacking. In this paper, based on ARMA innovation model and white noise estimators, Wiener 
state estimators for non-regular descriptor systems are presented by using modern time series analysis 
method [5] and block matrix theory [6,7]. The presented Wiener state estimators have more universal 
significance since they can be applied to both non-regular and regular descriptor systems. 

Consider the discrete time descriptor stochastic system 

)()()1( twtxtMx ΓΦ +=+ ,                                                                                                                (1) 

)()()( tvtHxty += ,                                                                                                                         (2) 
where the state nRtx ∈)( , the measurement mRty ∈)( , qRtw ∈)( , mRtv ∈)( , constant matrices 
M 、Φ、 Γ  and H  are respectively np× , np× , qp×  and nm× , and mn > . 

Assumption 1. )(tw  and )(tv  are correlated white noises. 
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where E is the expectation, T denotes the transpose, 1=ttδ , )(0 jttj ≠=δ , ])()(E[ T tvtwS =  is the 
correlation matrix. 

Assumption 2. H  can be represented as ][ )( mnmm OIH −×= . 
Assumption 3. The system is completely observable, that is, Cz∈∀ , we have 
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M , Φ , )(tx  can be divided into the following form 
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Substituting it into (1), (2) yields 
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That is 

)()()()1()1( 22112211 twtxtxtxMtxM ΓΦΦ ++=+++ ,                                                                                   (8) 

)()()( 1 tvtxty += .                                                                                                                                                        (9) 
Lemma 1. 2M  is full column rank matrix, that is mnM −=)(rank 2 . 
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From Lemma 1 we know, ( ) T
2

1
2

T
22 MMMM −+ =  is existed and premultiplying (8) by it yields 

)1()()()()1( 11222221122 +−++=+ ++++ txMMtwMtxMtxMtx ΓΦΦ .                                                           (10) 
Formula (9) can be rewritten as )()()(1 tvtytx −= , substituting it into (10) yields the state equation of 

)(2 tx  
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1222222 +−++−−+=+ −+−+++ tvqMMtyqMMtwMtxMtx ΦΦΓΦ .               (11) 
Substituting (10) into (8) yields 

)]1()()()([)1( 1122222112211 +−++++ ++++ txMMtwMtxMtxMMtxM ΓΦΦ  

)()()( 2211 twtxtx ΓΦΦ ++= .                                                                                                                                  (12) 
Let EMMI p =− + )( 22 , then (12) can be simplified to 

)()()1()( 2211
1

1 twEtxEtxqME ΓΦΦ +=+− − .                                                                                                (13) 
Substituting )()()(1 tvtytx −=  into (13) yields the observation equation of )(2 tx  
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Lemma 2. System (11), (14) is completely observable, that is, ),( 222 ΦΦ EM + is a completely 

observable pair. 
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ARMA innovation model 
Substituting (11) into (14) yields 
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1 +−+=+− −−−−− tvqMqPtwqPtyqMqP ΦΓΦ ,                                             (16) 
where 1−q  is the backward shift operator, and ])([)( 2
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Formula (16) can also be rewritten as 
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1 tvqMqPtwqqPtyqMqP −−−−−− −+=− ΦΓΦ ,                                                   (17) 
Introducing the left coprime factorization 
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111 −−−−−−−− =− qCqqBqqMqPqqP τΦΦΓ ,                                                           (18) 
where )( 1−qA , )( 1−qB  and )( 1−qC  are polynomial matrices having the form 
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1)( , iX  are the coefficient matrices and xn  is the degree of X . 
We define )(0 xi niX >= , and pIA =0 , 00 ≠B , 00 ≠C , τ  is an integer. 

Substituting (18) into (17) yields the ARMA innovation model 
)(ε)()(y)( 11 tqDtqC −− = ,                                                                                                                                        (19) 

)()()()()()( 111 tvqCtwqBqtεqD −−− += t ,                                                                                                        (20) 
where )( 1−qD  is a stable polynomial matrix, pID =0 , pRt ∈)(ε  is the white noise with zero mean 

and variance matrix εQ . )( 1−qD  and εQ  can be obtained by using the Gevers-Wouters algorithm [5]. 
According to (19), the innovations )(tε  can be computed recursively as 

)(ε)1(ε)(y)()(ε 1
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d
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 , ,1, += dd nnt ,                                                   (21) 

with the initial values ))1(ε,),0(ε( −dn . 
From formula (19), (20) and document [5], we have 
Lemma 3. System (11), (14) is completely observable, that is, ),( 222 ΦΦ EM + is a completely 

observable pair. 
For the descriptor system (1) and (2), under Assumptions 1~3, we have the following white noise 

estimators which have the wiener filter form 
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where C , D  are given by (19) and C~ , D~  are determined by the left coprime factorization as 
11 ~~ −− = DCCD ,                                                                                                                                                             (23) 
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and )0,max()0( ττ =∨ , while 







+=

+=

∨+∨+

∨+∨+

T
)0(

TT
)0(

T
)0(

T
)0(

ττ

ττ

Π

Π

iiv
v
i

iiw
w
i

FSGQ

SGFQ
,                                                                                                                               (25) 

where iF  and iG  can be computed recursively as 
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where we define )0( ∧= τBqB , )0( ∧−= τCqC , )0,min()0( ττ =∧ , )0,min()0( ττ −=∧− . 

Wiener State Estimators 

Consider the system (11) and (14), according to ),( 222 ΦΦ EM + is a completely observable pair, 
then there exists an pmn ×− )(  matrix 0T  such that 2022 ΦΦ ETM ++  is nonsingular [6]. 
Premultiplying (14) by 0T , and adding it with (11) yield 

)()()]1()1()[)(()1( 021
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1022 twETMtvtyqMETMtx ΓΦ +−+−+−+++ +−+  
)()( 22022 txETM ΦΦ += + .                                                                                                                                        (28) 

Let 2022 ΦΦΨ ETM += + , we know 1−Ψ  is existed, then the equation (28) can be rewritten as 
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where β  is the observability index. 
Let 
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It can be proved similarly to Lemma 2 that ),( 2
1 ΦΨ E−  is a completely observable pair according 

to ),( 222 ΦΦ EM + is completely observable, then Θ  is full column rank matrix, that is, 
T1T# ][ ΘΘΘΘ −=  is existed. 

#Θ  can be divided into 
[ ]110

#
−= βΘΘΘΘ  ,                                                                                                                                  (32) 

where )1,2,1( −= βΘ ii  are pmn ×− )(  matrices. 
Premultiplying (30) by #Θ  yields the non-recursive state expression 

)}()]1()1()[({)( 1
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102 twEtvtyqMEtx ΓΦΘ −+−+−= −  
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Taking the projection operation for (33) yields 
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where 1≥N . 
Substituting (22) into (34) yields 
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then 
)(~)|( 1)2(

2 NtyDKNttx N +=+ − )1( ≥N .                                                                                                            (38) 
In addition, from (9) we have 

)|(ˆ)()|(1 NttvtyNttx +−=+ .                                                                                                                           (39) 
Substituting (22) into (39) yields 
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then 
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In summary, we can obtain the following theorem by considering the stability of D~  
Theorem. The non-regular descriptor system (1) and (2) have the asymptotically stable Wiener 

state estimator (38) and (42) under Assumptions 1~3. 

Conclusion 
Using modern time series analysis method and based on ARMA innovation model and white noise 
estimators, Wiener state estimators for non-regular descriptor systems are presented in this paper. 
The presented Wiener state estimators have more practical value owing to the fact that they include 
regular descriptor systems as a special case and use degree reduction algorithm to reduce 
computations and avoid solving Riccati equations and Diophantine equations at the same time. 
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