
 

On Random SA-mixed Network Models Generated From Sierpinski and 
Apollonian networks 

Jing Su1, a, Bing Yao2, a, Ming Yao3, b 

1College of Mathematics and Statistics, Northwest Normal University, 
 Lanzhou, Gansu 730070, China 

2Department of Information Process and Control Engineering, Lanzhou, China 
aemail: yybb918@163.com, bemail: yybm918@163.com 

Keywords: Scale-free; Sierpinski networks; Apollonian networks; Degree cumulative distribution; 
Velocity. 

Abstract. We constructed the random SA-mixed models based on Sierpinski and 2-dimension 
Apollonian networks having scale-free properties, and we have shown our random SA-mixed 
models are scale-free. It is noticeable, adding unchanged motifs doesn't affect the scale-free 
behaviors of the origin networks. The random SA-mixed models are scale-free by proofs of 
extremum methods. 

Introduction 
Many real-life networks can be described as scale-free network models. In recent years, with the 

rapid development of the Internet of Things [1][2], it shows the scale-free feature increasingly in 
metabolic networks, communication networks and scientific literature [3][4]. In order to explore the 
topological structures of real-world networks, the researchers have built a variety of scale-free 
models. Such as deterministic scale-free web and deterministic recursive graphs, Sierpinski 
networks [5] and Apollonian networks [6] etc. 

Network motifs are an important local property of networks, and have been identified in a wide 
range of networks across many scientific disciplines and are suggested to the basic building blocks 
of most complex networks [7][8]. Motifs are of notable importance largely because they may reflect 
functional properties, and they have recently gathered much attention as a useful concept to answer 
structural design principles of scale-free networks, and may provide a deep insight into the 
network's functional abilities [9]. 

In this paper, we, in order to mimic real-world networks, build up SA-mixed models on the basis 
of Sierpinski networks and 2-dimension Apollonian networks by using the idea of motifs. We add 
motifs randomly in the SA-mixed models, therefore, it can simulate real networks better, and verify 
its scale-free by proving the scale-freeness of maximal model and minimal model respectively to 
approximate it. In addition, we prove the scale-freeness、the velocities of Sierpinski networks, 
Apollonian networks and SA-mixed models. Our results show that the velocity of SA-mixed models 
is faster than other two networks. It is a guidance for us to build different networks according to the 
needs of human. 

SA-mixed models 
We define some fractal operations before we show our models, and some fractal operations can 

be found in [5]. Let S(0) be a graph having three vertices A,B,C and three edges such that any pair 
of vertices is joined by an edge, we call S(0) a triangle (see Figure 1(a) and (b)). Clearly, the triangle 
S(0) divides the plane into two parts: One is out of S(0), called the outer face of S(0); one is inside 
S(0), called the inner face of S(0). 

A fractal (1)-operation yields a configuration H(1) (see Figure 1(c)) in the way: Add a vertex u 
into the inner face of a triangle shown in Figure 1(a), and then join u with three vertices A, B and C 
by three edges, respectively. We define a labelling function g for H(1) as: g(A)=g(B)=g(C)=k-1, 
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g(u)=k for k≥1. 

 
Figure1 Two fractal operations. 

A fractal (II)-operation produces a complex configuration H(2) (see Figure 1(d)) in the way: Put 
an operation triangle abc shown in Figure 1(b) into the inner face of an objective triangle ABC 
shown in Figure 1(a), and furthermore join c with A and B by two edges, join a with B and C by two 
edges, and then join b with C and A by two edges. Clearly, H(2) has 7 inner faces and an outer face. 
We define a labelling function f of H(2) as: f(A)=f(B)=f(C)=k−1, f(a)=f(b)=f(c)=k for k≥1. 

Sierpinski and Apollonian models. 
Sierpinski model S(t) The Sierpinski model S(t) can be generated by the Sierpinski-algorithm1. 

Algorithm1 Sierpinski-algorithm 
Initialization. At time step t=0, S(0) is shown in Figure 2, and the labelling function f holds 
f(A)=f(B)=f(C)=0. 
Iteration. At time step t, do a fractal (II)-operation to every objective triangle xyz of S(t−1) with no 
f(x)=f(y)=f(z) and at least one of three labels f(x), f(y) and f(z) is equal to t−1, and label three vertices 
of each operation triangle with t under f. 
 

 
 

Figure2: The construction of the Sierpinski model S(t) 
at the first four steps. 

Figure3: The construction of the Apollonian networks 
at the first four steps. 
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3ln
2ln2 +=Sγ , thus, S(t) is scale-free [5]. 

Apollonian model A(t) The Apollonian model A(t) can be generated by the Apollonian-algorithm 
2. 
Algorithm2 Apollonian-algorithm 
Initialization. At time step t=0, A(0) is a triangle ABC, and the labelling function f holds 
f(A)=f(B)=f(C)=0. 
Iteration. At time step t, do a fractal (I)-operation to every triangle xyz of A(t−1) with at least the 
number of three labels f(x), f(y) and f(z) is equal to t−1, and label the vertex added with t under f. 

See A(0), A(1), A(2) and A(3) shown in figure-3. The Apollonian model A(t) has its own 
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The cumulative distribution of A(t) is Pcum(k)~ Ak γ−−
⋅⋅ 12ln

3ln1
3

2
1 with 

2ln
3ln1+=Aγ . When the size of the 

Apollonian model A(t) is large, the degree distribution P(k) follows a power law with the exponent 
between 2 and 3. Therefore, the Apollonian model A(t) is also scale-free. 

SA-mixed models. 
We are ready for constructing our SA-mixed models. 
1) SA-mixed model ))(,( 1

n
imAtS  

An SA-mixed model S(t, A(m1), A(m2), … ,A(mn)) can be built up by the SA-mixed-algorithm 3. 
For n Apollonian models A(m1), A(m2), … ,A(mn), we arrange the vertex numbers of A(mi) with 
i=1,2, …, n in an ordered order from small to large, in other words, the vertex number of A(mj) does 
not exceed that of A(mj+ 1) for j=1,2, … n−1, we call them motifs. 

Algorithm3 SA-mixed-algorithm 
Initialization. At time step t0, ))(,( 10

n
imAtS  is obtained by choose randomly A(m1), 

A(m2), … ,A(mn) and put randomly them into 106 −t  objective triangles in which every triangle ABC 
holds f(A)=f(B)=f(C)=t0. 
Iteration. At time step t, do a fractal (III)-operation to every objective triangle ABC of S(t). The 
resulting model is just an SA-mixed model S(t, A(m1), A(m2), … ,A(mn)). 
 

  
Figure4: The fractal (III)-operation. Figure5: The construction of the SA-mixed models at 

the time step 1. 
 

Before realizing our goal, we define the fractal (III)-operation that is a mixed operation of the 
fractal (I)-operation and the fractal (II)-operation. We label the three vertices of the outer face of an 
Apollonian model A(mi) with a,b,c, and put this A(mi) into the inner face of an objective triangle 
ABC, and do a fractal (II)-operation (see Figure 4). Since the Sierpinski model S(j) has 6j−1 objective 
triangle ABC with f(A)=f(B)=f(C)=j at time step j, we can set the initial SA-mixed model 

))(,( 10
n

imAtS  by 106 −t ≥n. 

We write ))(,( 1
n

imAtS  instead of S(t, A(m1), A(m2), … ,A(mn)) for short. Because the number of 
all objective triangle ABC with labeling f(A)=f(B)=f(C)=t is 6t−1, so, the total number of the motifs 
A(mi) is also 6t−1. Notice that 6t−1 motifs A(mi) were chosen randomly and were settled randomly 
into 6t−1 objective triangles of S(t). Therefore, it is difficult to compute the numbers of vertices and 
edges of ))(,( 1

n
imAtS , and then it is impossible to write the degree spectrum of ))(,( 1

n
imAtS . 

If all motifs A(mi) added in implementing fractal (III)-operations to all objective triangles of S(t) 
are equal to A(m1) at time step t, we get a particular SA-mixed model ))(,( 11min

nmAtS . Similarly, 

another particular SA-mixed model ))(,( 1max
n

nmAtS  can be obtained when all motifs A(mi) added in 
implementing fractal (III)-operations to all objective triangles of S(t) are equal to A(mn). 

In order to simplify the calculation, we let nv(t) and ne(t) be the total numbers of vertices and 
edges of ))(,( 1

n
imAtS  at step time t, respectively; and let )(min tnv  and )(min tne  be the total numbers 

of vertices and edges of ))(,( 11min
nmAtS  at step time t, respectively; and let )(max tnv  and )(max tne  be 

the total numbers of vertices and edges of ))(,( 1max
n

nmAtS  at step time t, respectively. Obviously, 
we get )()()( maxmin tntntn vvv ≤≤ , )()()( maxmin tntntn eee ≤≤ .Thereby, we have 
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does not exceed 1323 1 −+⋅ − tmn  and its minimum degree is 3. 

2) Degree cumulative distribution of the SA-mixed models 
To show our models scale-free nature, in the following we concentrate on the degree cumulative 

distribution Pcum(k) to measure the degree distribution P(k) of the SA-mixed model ))(,( 1
n

imAtS , 
where the degree distribution P(k) is the probability that a randomly selected vertex has exactly k 
edges in ))(,( 1

n
imAtS . 

For estimating the topological structure of ))(,( 1
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models ))(,( 11min

nmAtS  and ))(,( 1max
n

nmAtS , respectively, in the following argument. Since the 
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maximal model of random SA-mixed models is also scale-free. 
Due to the degree distribution of the maximum model and the minimum model are all obey 

power law distribution, we can use this two models to approximate the random SA-mixed models. 
Obviously, we have )()()( maxmin kPkPkP ≤≤ , which means that the random SA-mixed models also 
follows certain power law distributions, so they are scale-free. 

3) Velocities of the models 
The dynamic development speed of networks was proposed by [13], this metric is used to 

measure the speed development of real networks. The velocity of the minimum random SA-mixed 
model ))(,( 11min

nmAtS  can be computed as 

follows
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)()( minmax tVtV elel − <ε with ε>0. Hence, we can control Vel(t) by computing )(min tVel  and )(max tVel . It 
can simulate the real-network because of its randomness. This SA-mixed model can satisfy higher 
requirements on the speed of network, such as we can curb the speed of rumors and prevent the 
speed of infectious diseases. 

More network models of SA-mixed models. 
For further researching SA-mixed models, we are considering the following possible researching 

problems: • Add n Apollonian networks A(m1), A(m2), … ,A(mn) to every triangle ∆ABC of 
Sierpinski network at time step t with labeling f(A)≠f(B), f(B)≠f(C) and f(A)≠f(C). We call this 
network DL (different label) SA-mixed models.• Add n Apollonian networks A(mi) (i=1,2,…,n) to 
 16 −⋅ tP  triangles ∆ABC of Sierpinski networks at time step t with labeling f(A)=f(B)=f(C), where P 
is market regulative parameters and 0≤P≤1. We refer to this network MRSL (market regulation 
some label) random SA-mixed model. When P=1, MRSL random SA-mixed model is one 
introduced in this paper.• Similarly, if we add A(mi) (i=1,2,…,n) to  )(tnP ∆⋅  triangles with 
f(A)≠f(B), f(B)≠f(C) and f(A)≠f(C), 0≤P≤1, where )(tn∆  is the total number of ∆ABC for )(tn∆ =12 
with t=2, and 3684)( −

∆ ⋅= ttn  with t≥3.•On the basis of random SA-mixed models, we use a graph 
G with three vertices at least a triangle to replace 2-dimension Apollonian networks A(mi) with 
i=1,2,…,n and regard G as a motif, the resulting models are called SG-mixed models. 

Conclusion 
In this paper, the SA-mixed models which we study in this paper are constructed by mixing 

randomly which have scale-free characteristics. We believe that our models may help engineers in 
network topology-designing and performance analyzing, it also can help to regulate markets. 
Clearly, the models which we proposed are maximum planar graph, so it might help to understand 
some properties of real-world planar networks and may be helpful for designing printed circuits. In 

1879



 

a similar way, we change models from Apollonian networks to any graph G with three vertices at 
least a triangle. We have shown that they have scale-free characteristics, which display similar 
features. The networks present the typical characteristics if real-life networks in nature and society 
as they have a power-law degree distribution. We compare them by computing analytical 
expressions for the degree distribution and their velocity. 
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