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Abstract. Since the computation ability of computer improves dramatically, a lot of new 
meta-heuristic methods arise. All those algorithms are originated from some mechanisms in nature, 
and are similar in structure and widely used to solve global optimization problems.  However, 
evolutionary algorithm, such as BBO, is lack of strict theory foundation and hard to be analyzed in 
theory, because it comes from heuristic idea and has complicated random behavior. Therefore, In 
this paper, we propose a Markov chain model of BBO to analyze the relationship between 
individual vector and PopSize , and prove that a Markov population series{ , 0,1,2,...}( )t ttξ ξ= ∈Ω in 
BBO is an absorbing Markov chain. Convergence analysis of BBO is obtained, which is the 
Markov population series in BBO converge to objective subspace

*

0B  with probability one. 

Introduction 
Since 1960s, a lot of researchers are interested in evolutionary computation with the 

development of computer technology. Some famous algorithms are proposed, such as Genetic 
Algorithm, Evolutionary Programming, and Evolutionary Strategy. Since the computation ability of 
computer improves dramatically, a lot of new meta-heuristic methods arise, such as Ant Colony 
Optimization (ACO) [1], Particle swarm Optimization (PSO) [2], Differential Evolution (DE) [3], 
Grey Wolf Optimization (GWO) [4], Biogeography Based Optimization (BBO) [5], Hybrid Grey 
Wolf Optimization (HGWO) [6] ,et al. All those algorithms are originated from some mechanisms 
in nature, and are similar in structure. We call such algorithms as evolutionary algorithms. In 
general, evolutionary algorithms are random and heuristic optimization methods, which are widely 
used to solve global optimization problems. As we use evolutionary algorithms to solve 
optimization problems, it is easy to add some heuristic ideas. Therefore, evolutionary algorithms 
demonstrate excellent performance in a lot of fields such as data mining, engineering optimization 
an industry design. 

However, evolutionary algorithm, such as BBO, is lack of strict theory foundation and hard to be 
analyzed in theory [7], because it comes from heuristic idea and has complicated random behavior. 
When we use BBO to solve optimization problems, there are short of theoretical guarantee. 
Therefore, In this paper, we propose a Markov chain model of BBO to analyze the relationship 
between individual vector and PopSize , and prove that a Markov population 
series{ , 0,1,2,...}( )t ttξ ξ= ∈Ω in BBO is an absorbing Markov chain. Convergence analysis of BBO 
is obtained, which is the Markov population series { , 0,1, 2,..., }( )t ttξ ξ= ∞ ∈Ω in BBO converge to 

objective subspace
*

0B  with probability 1. 
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Basic of BBO 
Research work about biogeography could be traced to nineteen century, when  Alfred 

Wallance[8] and Charles Darwin[9]started their research. In 1960s, Robert MacArthur and Edward 
Wilson obtained breakthrough and they published their achievement and created mathematical 
model of biogeography. In 2008, Dan Simon [5] proposed a new optimization method based on 
biogeography called BBO, which are widely applied in Engineering Optimization [10-14]. 

The mathematical model of biogeography demonstrates the process that species migrate from 
one island to another. Islands or habitats that are well suited for species obtain high Habitat 
Suitability Index (HSI).                    

Theoretical Analysis of BBO 
As we create Markov chain model for BBO, we should first map the state space of a Markov 

chain to the operation space of BBO. If the population size of BBO is one, the state space of the 
Markov chain is the solution space. That means every solution is a state. If we code the solution 
with d bits binary system, the solution space is  {1,0}dS = . Furthermore, the number of the states 
is | | 2dS = . 

If the population size of BBO is PopSize, which is greater than one, suppose the population is a  
ordered and repeatable set. That means some individuals in the population could be the same. The 
state space of the Markov chain could be mapped to the population space PopSize{0,1}d×Ω = .  
Furthermore, the number of the population states is PopSize| | 2d×Ω = . If the population is an 
unordered and repeatable set, the state space of the Markov chain could be mapped to the 
population space PopSize{0,1}d×Ω ⊂ .  

After the state space of the Markov chain is set, arbitrary population xX  and yX , 
population yX  is generated by population xX  at a probability 1( | )t y t xP X Xξ ξ+ = =  , which is 
the transition matrix of the Markov chain. 

Definition 1 A state xS  of a Markov chain is called an absorbing state, if it could not escape 
itself. That means 1iip = . A Markov chain is called an absorbing Markov chain, if it has at least 
one absorbing state and an arbitrary state could reach an absorbing state at one or several steps. 

The above definition could be also stated as follows: given a Markov population series 
{ , 0,1, 2,...}( )t ttξ ξ= ∈Ω  and a objective subspace

*

0B ⊂ Ω , the Markov chain is an absorbing 
Markov chain, if 

1 0 0( | ) 1t tP B Bξ ξ∗ ∗
+ ∈ ∈ = ， {0,1,2,...}t∀ ∈ .                                        (1) 

In BBO algorithm, there are several operations such as migration and mutation operation. 
Markov chain model should be created for the respective operation. 

Suppose a solution space T is d bits binary system, we get the size of T is 
m 2d= . {1,2,3,..., }mi∀ ∈ ,a solution ix  ,there is a population P with PopSize  individuals. We 
define a vector 1 2( , ,..., ,..., )i mw w w w=w , {1,2,3,..., }mi∀ ∈ , and iw indicates the number of ix  in 
the population P. 

We can obtain the relationship between w and PopSize  as follows: 
Proposition 1  An arbitrary population in BBO is made up of PopSize  individuals which 

select from the search space 1 2 3{ , , ,..., }mT x x x x= , that means PopSize: R Rm d dψ × ×→ ,here we get 

1
PopSize

m

i
i

w
=

=∑                                           (2) 

where iw indicates the number of ix  in the population P, PopSize  is the population size . 
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Proof. Let population 1 2 PopSizeP { , ,..., ..., }ky y y y= , {1,2,3,.. PopS. e, }izk∈ , k Ty∀ ∈ , we could 
find cx X∈  and c kx y= ， {1,2,3,..., }c m∈ . Therefore, P is rewritten as 

1 2

1 1 1 2 2 2P { , ,..., , , ,..., ,..., , ,..., , ,..., , ,..., }
i m

i i i m m m

w w w w

x x x x x x x x x x x x=
   

                   (3) 

 {0,1,2,. Po.., }pSizeiw ∈∀ .As we know the population size of P is PopSize , the sum of 

{0,1,2,.. PopS. z }e, iiw ∈ is PopSize . 
Proposition 2 a Markov population series{ , 0,1,2,...}( )t ttξ ξ= ∈Ω in BBO is an absorbing 

Markov chain. 
Proof. Given a Markov population series { , 0,1, 2,...}( )t ttξ ξ= ∈Ω  and a objective subspace 

*

0B ⊂ Ω , if the Markov chain is an absorbing Markov chain, the necessary and sufficient condition 
is as follows: 

1 0 0( | ) 1t tP B Bξ ξ∗ ∗
+ ∈ ∈ = ， {0,1,2,...}t∀ ∈  

First prove sufficiency: if 1 0 0( | ) 1t tP B Bξ ξ∗ ∗
+ ∈ ∈ = ， {0,1,2,...}t∀ ∈ holds, then it means the 

population tξ  at moment t belongs to objective subspace 0B∗ . It is obvious that the population 

1tξ +  at moment t+1 must belongs to objective subspace 0B∗ . According the definition of absorbing 
Markov chain (definition 1), the population series{ , 0,1,2,...}( )t ttξ ξ= ∈Ω in BBO is an absorbing 
Markov chain. 

Then prove necessity: population series { , 0,1, 2,...}( )t ttξ ξ= ∈Ω  adopts elite strategy, that is if 
the population at moment t contains the optimal solution x∗ , it will take the place of the worst 
solution and remain in the next population 1tξ +  at moment t+1. Evidently, the population 1tξ +  at 
moment t+1 contains the optimal solution x∗ , 1 0t Bξ ∗

+ ∈ .Therefore, 1 0 0( | ) 1t tP B Bξ ξ∗ ∗
+ ∈ ∈ = . 

Lemma 1 Suppose a solution space with d bits binary system, ( ) { : ( ) ( )}j ii j x s x ssθ = =  which is 
defined as Definition 2, then we get 

(1) 1 2 3 2 /2 1 2 /2
(1) (1) (1) .... (1) (1)d dθ θ θ θ θ

−
= = = = = . 

(2) 
2 /2 1 2 /2 2 2 /2 3 2 1 2

(1) (1) (1) .... (1) (1)d d d d dθ θ θ θ θ
+ + + −

= = = = = . 
Suppose a population 1 2 PopSizeP { , ,..., ..., }ky y y y= , {1,2,3,.. PopS. e, }izi∈ ， we order ky  

according to the sequence of ix , then we get 

1 1

2 1 1 1 2

3 1 2 1 2 1 2 3

1 1

1 1

                                              
       

, ( 1, 2,..., )
, ( 1, 2,..., )
, ( 1, 2,..., )

, ( ( ) 1,( )

            

2,...

  

,

 

(

  

k

m m

m j j
j j

x if k w
x if k w w w w
x if k w w w w w w w

y

x if k w w w
− −

= =

=
= + + +

= + + + + + +
=

= + +∑ ∑



1

1
) )

m

j m
j

w
−

=









+


∑

                        (4) 

The above formula could be simplified as ( ) , 1, 2,3,..., PopSizek g ky x k= =  
Where ( )g k  could be expressed as 

2013



 

1

( ) min( )

      .
z

j
j

g k z

subject to w k
=

=

≥∑
                                (5) 

Proposition 3  Markov transfer matrix T after one generation in BBO is an 
PopSize PopSizeH H× matrix, where PopSizeH  is 

{

'

PopSize

0PopSize
0( )

PopSize PopSize
' PopSize 1

0 0
( ) : {0,1,2,..., }, , PopSize .

i

j
j

iS k
i

i j j
j j

k
H

k

S k k R k m k m jk

=
=

+

= =

 
 =  
 
 


= ∈ ∈ = = 



∑∑ ∏

∑ ∑

         (6) 

Proof. As PopSize 1= , PopSizeH is m because there are m solutions in the solution space. The 

right of the above equation equals 0 0 1

0 1

k k k
k k

+   
•   
  

. Because
PopSize

0
PopSizej

j
jk

=

=∑ , we get 

0 10 1 PopSize 1k k× + × = = . Because 
0

NP

j
j

k m
=

=∑ ，we get 0 1k m= − and 1 1k = . The right of 

equation (21) equals 
1
1 1

m m
m

m
−   

• =   −   
. As PopSize 1= , equation (21) holds. 

Suppose equation (21) holds, as PopSize Pop= .  Then as PopSize 1Pop= + , we get 

1 2 1 1

1
... 1 2 1 1

.
, ,..., , ,

Pop Pop Pop

Pop
k k k K m k k KPop Pop Pop

m K
H

k k k K k k
− +

+
+ + + + = + =− +

   
=    

   
∑ ∑  

Because of  
1 2 1 1 2 1

!
, ,..., , ! !... ! !Pop Pop

m m
k k k K k k k K− −

 
= 

 
 and 

1 1

!
, ! !Pop Pop Pop Pop

K K
k k k k+ +

 
= 

 
, we obtain 

1
1 2 1 1 1 2 1 1

! ! !
! !... ! ! ! ! ! !... ! ! !Pop

Pop Pop Pop Pop Pop Pop

m K mH
k k k K k k k k k k k+

− + − +

= × = . 

The above equation could be rewritten as 

'

1
0 1 10 0 1

01
1 00 ( )1

...
...

i
Pop

jPop
jPop

Pop iS k
i

kk k kk k k
H

kk k
k

+
+

=+
+ =

 
+ + ++      = =           

 

∑∑ ∏ . 

Lemma 2  The optimal value in a series of generations in BBO algorithm is non-increasing, 
i.e., 

( ( 1)) ( ( ))S t S t+ ≤X X                              (7) 
Proof. During the update of every generation in BBO algorithm, the best individual bestx  in t-th 

generation is stored and used to replace the worst individual in (t+1)-th generation. Therefore, there 
is always the best individual in the (t+1)-th generation, which belongs to the t-th generation. 

Theorem 1. Given a Markov population series { , 0,1, 2,...}( )t ttξ ξ= ∈Ω  in BBO algorithm and 

an objective subspace 
*

0B ⊂ Ω , where Ω  is the population space. 
* *

0 1 2{ { , ,..., }: {1,2,..., }, }NP iB y y y i NP y B= = ∃ ∈ ∈Y . The Markov population series 
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{ , 0,1, 2,..., }( )t ttξ ξ= ∞ ∈Ω  converge to objective subspace
*

0B  with probability 1, i.e., 

*

0 0lim ( | ) 1tt
P Bξ ξ

→∞
∈ =                                   (8) 

Proof. Suppose x∗  is the optimal solution to the cost function cos ( )t ⋅ : 
f 0x ξ∗ ∈ , according to the Proposition 2( the Markov population series{ , 0,1,2,...}( )t ttξ ξ= ∈Ω in 

BBO is an absorbing Markov chain ), we can get , 1, 2,3,...tx tξ∗ ∈ =  Therefore, 
*

0 0lim ( | ) 1tt
P Bξ ξ

→∞
∈ = ; 

if 0x ξ∗ ∉ ，suppose
11 0, tt x ξ∗∃ > ∈ ，

22 0, tt x ξ∗∃ > ∈ ，then 
*

1 0t Bξ ∈  and 
*

2 0t Bξ ∈ . Therefore, 

1 2
( , ) 0t tP ξ ξ > ，

2 1
( , ) 0t tP ξ ξ > ，we get 

1 2t tξ ξ↔ ; 

if 0x ξ∗ ∉ ， suppose 
11 0, tt x ξ∗∃ > ∈ and

22 0, tt x ξ∗∃ > ∉ , then
1 2

( , ) 0t tP ξ ξ = ,that 

is
1 2
!t tξ ξ→ .Because 

*

0B is a normally returned, irreducible and non-cycle closed set ， 

0 , ( ), ( )Y Yξ π π∀ ∃  is a limit probability distribution. we obtain 

*

*

0
0

0

( ),
lim ( | )

0,
tt

Y Y B
P Y

Y B

π
ξ ξ

→∞

 ∈= = 
∉

 

That is tξ  which must be in 
*

0B ，therefore
*

0 0lim ( | ) 1tt
P Bξ ξ

→∞
∈ = . 

Conclusion 
Evolutionary algorithm, such as BBO, is lack of strict theory foundation and hard to be analyzed 

in theory due to the complicated random behavior. Therefore, we propose a Markov chain model of 
BBO to analyze the relationship between individual vector and PopSize , and prove that a Markov 
population series in BBO is an absorbing Markov chain. Convergence analysis of BBO is obtained, 
which is the Markov population series in BBO converge to objective subspace

*

0B  . 
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