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Abstract: Timoshenko beam with variable section is widely used for the sake of good mechanical 
behavior and economic benefit. In order to improve analytical accuracy, stiffness matrix of 
Timoshenko beam element with arbitrary section was founded. According to the relationship 
between geometrical deformation and element internal force, by integral of sectional curvature, 
shearing strain and axial strain, stiffness matrix of the Timoshenko beam element was derived. Then, 
analytical program was developed, which was proved exact in comparison with theoretical solution. 

Introduction 
Beams with variable section was widely used in large-span bridges which not only reduce the 

self-weight of structure significantly to improve spanning capacity, but also make full advantage of 
material. So accurate analysis of variable section beam makes great sense. In current studies, 
researchers usually adopt one of three methods to analyze beam element with variable section[1]. 
First method, beam element with variable section is considered as uniform beam based on average 
equivalent method[2-3]. Taking average of sections between two ends of the beam is one kind of 
average equivalent method. In the second method, stiffness matrix of beam element with variable 
section is founded by equilibrium equation[4]. In other studies, principle of minimum potential 
energy is adopted to establish the stiffness matrix of the beam element with variable section[5-8]. 

Based on the current studies, the relationship between geometrical deformation and element 
internal force was established by integral of sectional curvature, shearing strain and axial strain. So 
the stiffness matrix of the Timoshenko beam element was derived directly from the relationship 
mentioned above. The shape function of element with arbitrary variable section was easily derived 
from the study, which could be applied to further studies. Then, program was developed based on 
the equation derived above. At last, numerical calculation about a cantilever beam structure was 
carried out, which prove that stiffness matrix of beam element with arbitrary variable section is 
correct. 

Calculation model 
In practical, sectional properties may vary irregularly along the element as shown in Fig.1. 
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Fig.1  Spatial Timoshenko beam element with arbitrary variable section 
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In Fig.1(a), u , v  and w  are displacements along x, y and z respectively; xθ , yθ , zθ  are rotation 
angles around x, y and z respectively; subscript i and j indicate node i and j. In Fig.1(b), xM  is 
torque around x; yM  and zM  are the moment around y and z respectively; xF  is axial force; yF  
and zF  are shear force along y and z respectively. 

Variable functions of arbitrary section properties are assumed in the forms expressed in Eq.1, 
 ( ) ( )i II x I f x=    ( ) ( )i AA x A f x=    ( ) ( )

ss si AA x A f x=  (1) 
where, ( )If x 、 ( )Af x 、 ( )

sAf x  are distribution functions of inertial moment, axial area and shear area 
of beam element with arbitrary section respectively. Four variables are defined as shown in 
Eq.2~Eq.3. 
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According to mechanical analysis of beam element as shown in Fig.1, sectional internal force of 
any position along the element can derived from formula as shown in Eq.4. 
 ( )I F I I

i
pyx = +F H F F  (4) 

where, I
iF  and ( )I xF  are respectively the section internal forces at section i and the section which 

is x away from the section i; FH  is transfer matrix of section internal force. I
iF , ( )I xF  and FH  

can expressed in Eq.5~Eq.7. 
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The stiffness matrix of beam element in plane xoy can be first derived, the equivalent value in 
plane xoz can be similarly derived. Subscript y in variables defined above facilitate derivation. Then 
section internal force vector in plane xoy can be expressed as Eq.8 
 ( ) ( )I F I I

i
y y y pyx x= +F H F F  (8) 

Derivation of stiffness matrix 
Axial and torsional stiffness 

Axial strain and twist ratio of beam element with variable section is not constant, the axial 
displacement can be derived by integral as shown in Eq.9, 
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where, iN  is the axial force in node i. 
Axial force at section j could be derived from iN  based on the static equilibrium equation. 

Likewise, torque is derived from formula as shown in Eq.10. 
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Bending and shearing stiffness 
Total vertical displacement includes two parts as shown in Eq.11, 

 by syv v v= +  (11) 

where, byv  is the displacement induced by bending moment, syv  is the displacement induced by 

shearing force. 
Firstly, taking vector yδ  as section response as shown in Eq.12, 

 ( ) ( ) ( ) T

y yx v x xθ =  δ  (12) 
According to mechanics of materials, relationship between displacements and section internal 

force was established as shown in Eq.13, 
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Stiffness matrix was further derived from Eq.9, Eq.10 and Eq.13. 
For uniform beam element, variable functions described in Eq.1 equal 1. Parameters defined in 

Eq.2~Eq.3 will be simplified as shown in Eq.16~Eq.17. 
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Then, stiffness matrix of uniform beam element was derived.
 

Example analysis 
A FEA program was developed based on the equation derived above. A cantilever beam as 

shown in Fig.2 is selected as the example object. The beam height varies linearly along the axes. 
Load and dimension of the structure are listed in Table1. 

Table 1. Calculation parameter 
E/MPa a/m b/m hA/m hB/m q/(kN/m) P/(kN) 
3.0e4 10 0.25 1.4 0.2 5 10 
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Fig.2. Cantilever beam with rectangular section 

According to structural mechanics，vertical displacement of section B vB=-9.7838mm，and 
sectional rotation angle θB=0.001798rad. Displacement and rotation angle in section B calculated 
from different models are showed in Fig.3. Lateral axis shows number of equivalent section applied 
to simulate the structure by average equivalent method. 
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a Nodal displacement                      b Rotation angle 

Fig.3. Response of section B calculated from different models 
As shown in Fig.3, response calculated from model with only one element derived in this paper 

is exact compared to theoretical solution. In the contrary, more elements are needed to get exact 
solution for models based on average equivalent method. 

Conclusion  

1）Stiffness matrix of Timoshenko beam element with variable section was derived by 
geometrical analysis and element equilibrium condition. 

2）Based on the theoretical study, the calculation program was developed. Numerical calculation 
was carried on a cantilever beam structure which shows that the Timoshenko beam element with 
variable section is correct. 
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