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Abstract. In this paper, By the use of a new fixed point theorem and the nonlocal BVP Green
function. The existence of at least one positive solutions for the nonlocal fourth-order boundary
value problem with the first order derivative

u® )+ Au'(t) = Af (t,ut),u'(t)),0<t<1

U =u(®) = [ p(s)u(s)ds
U0 =u'() = [ q(s)u (s)ds

is considered, where f is a nonnegative continuous functionand 1>0,0<A<z*, p,qe L[0,1],
p(s)=0,q(s)<0.

1. Introduction

The deformation of an elastic beam in equilibrium state, whose two ends are simply supported, can
be described by a fourth-order ordinary equation boundary value problem. Owing to its significance
in physics, it has been studied by many authors using nonlinear alternatives of Leray-Schauder, the
fixed point index theory, the Krasnosel’skii’s fixed point theorem and the method of upper and
lower solutions, see for example [1-4, 6-10].

Recently, there has been much attention focused on the question of positive solution of
fourth-order differential equation with one or two parameters. For example, Li [6] investigated the
existence of positive solutions for the fourth-order boundary value problem. Ma [9] studied the
existence of symmetric positive solutions of the nonlocal fourth-order boundary value problem. Bai
[3] studied the existence of positive solutions of the nonlocal fourth-order boundary value problem
by the use of the Krasnosel’skii’s fixed point theorem. All the above works were done under the
assumption that the first order derivative u" is not involved explicitly in the nonlinear term f .

In this paper, we are concerned with the existence of positive solutions for the fourth-order
three-point boundary value problem
u® )+ Au'(t) = Af(tu(t),u'(t)),0<t<1

u() =u(®) = [ p(s)u(s)ds )
u'(0) =u'() = [ @)’ (s)ds
The following conditions are satisfied throughout this paper:

(H1)2>0,0<A<7?;

(H2) f :[0,2]x[0,00)x R —[0,0) IS continuous, p,qe L[0,1], p(s)=0,q(s) <0,

j: p(s)ds <1, jolq(s)sin JAsds + j:q(s)sin JA@L-s)ds <sinv/A.
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2. The preliminary lemmas
Suppose Y =c[0,1] be the Banach space equipped with the norm|ul, = {nél%|u(t)|.

Let4,4, be the roots of the polynomial P(1) = 2> + A1, namely, 4, =0,4, =-A. By (H;) it is easy to
see that -z* <4, <0.

Let Q(ts)(i=12) bethe Green’ s function of the linear boundary value problem :

—u'(t)+A4u(t)=0,0<t<1
{u(()) =u() =[] ps)u(s)ds
Then, carefully calculation yield:

Q(t,s) = Gl(ty5)++rG1(S,X) p(x)dx; G(t,s) ={
1—J‘0 p(x)dx *°

{—u"(t)+12u(t) =0,0<t<1

s(l-1),0<s<t<1
t(1-5),0<t<s<1

u(0) = u(l) = j:q(s)u(s)ds
Then, carefully calculation yield:

sin/At +sinA(@1-t) 1
Q,(t,s) =G, (t,s)+ : - G, (s, X)q(x)dx
sinﬂ—josin qu(x)dx—josin JA@-x)q(x)dx jo

sinv/Assin/A(1-t)

0<s<t<1
G \/Zsin\/ﬂ
2(t’5) =
sin+/AtsinvA@L—5s)
,0<t<s<1
JAsinJA
Denotel: o, = sin /At +sin VA1)

———— 0,(t) = 1 1
1- jo p(x)dx “ sinvA - IO sin \/qu(x)dx —_[0 sin \/K(l— X)q(x)dx
Lemma 2.1: Suppose (H1) (H2) hold. Then for any y(t) € C[0,1], BVP
u® () +Au(t) = y(t),0<t<1
u(0) =u() = [, p(s)u(s)ds )

U =u"() = )" (s)ds
the unique solution

u® = [ [ Qut )Q, (5. 0)y()dzds (3)
where Q(t,8)=G,(t,5)+a, [ G,(s, 0 p(¥)dX; Q(5,7) = G,(5,7) +a,(5) |, G, (r, )q(x)dx
By (3), we get: u'() = [ Q,(s,7) f,(r,u().u' (2))dzds ~ [ [sQ,(5,7) ,(z,u(x).u' (z))d zdls (4)

Lemma2.2 [Bai]: Assume (H;) (H2) hold. Then one has:
(i) Q(t,s)=0,vt,s€[0,1],Q,(t,s)>0,Vvt,s e (0,1);
(i) G, (t,s) > a G, (t,1)G, (s, s), Vt,s € [0,1];
(iii) G, (t,s) <b G, (s,s), Vt,s €[0,1].

1

where a, =1a, =+/AsinVA;b =1b, = }
a:l 2 bl 2 Sln\/z

Denote2: d, = 52‘32 aGt,t)(i=12)

Lemma 2.3[Bai]: Assume (H1) (H2) hold and are given as above, Then one has
(i) max @, (t) = @, (3); (io<d <1

Lemma2.4: If y(t)ec[0,1] and y(t)>0, then the unique solution u(t) of then BVP(1)satisfies:
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minu(t) > d, |uf,; where: d, =minaG,(t1).
ProA(_)E By(2)and (iii) of Lemmazié:;ve get:
u® < [ [.10,G,(5.9) + o, [ G,(5.X) p(X)AXIQ, s, 2) y(¢)d s
= [ [.[G.(5.5) + ], G, (5, X) P(X)AKIQ, (5, ) y(c)dl rds
= [ [ Q5. 9)Q, (s, 1)drds
therefore, |u], < [ Q(5.9)Q,(s,7)dds.

By (2) and (ii) of Lemma2.2, we have:
minu(t) > min [/ ].[8G,(t.1G,(5,5) + @[ G,(5.X) P(X)AXIQ, (5. ) y(z)d rcs

>0, [ [ [G,(5.9) +a, [ G,(s,¥) p(¥)dX]Q, (5,7)y(z)dzds =, [ [ Q,(5,5)Q,(s,7)dzdls > d [u],
So, minu(t) 2 d, |uf,,, The proof is completed.

1c
4*1

Theorem 2.1[guo]: Let r,>r,>0,L>0 be constants andQ, ={ueX :a(u)<r,Bu)<L},i=12
two bounded open setsin X  SetD ={ueX:a()=r,},i=12;
AssumeT :K — K is a completely continuous operator satisfying:
(A1) a(Mu)<r,ueD, NnK;a(Tu)>r,ueD,nK; (Az)A(Tu)<L,ueK; (Asz)there is3p e (Q, "K)\{0},
such that a(p) = 0and a(u+Ap) > a(u) ,for all vue K,2>0.

ThenT has at least one fixed point in (Q,\Q,) nK

3.The main results
Let X =C'[0,1] be the Banach space equipped with the norm |u|| = max|u(t)| + tm[f31§|u'(t)| , and

K = {u € X 1u20, minu(t) > dl||u||o} isaconeinx.
Define functionals «(u) = tmg[%|u(t)| , Bu) = tr11[g\ﬁ|u‘(t)| ,Vue X, then u| < 2max{a(u), A(u)} ,

and a(Au) =[A|a(u), B(Au)=|1|BWU),Vue X,1eR;a(u)<a(v),VuveK,u<v.
In the following, we denote: 7, = jolj:Ql(s,s)Q2 (s,7)dzds; 7, = I:ijl(s,s)Qz (s,7)dzds

T2 :U: [G,(z.7) + 0, (3) fol G, (r,X)q(x)dx]dz

We will suppose that there are 3L>b>db>c>0 such that f(t,u,v) satisfies the following
growth conditions:

(H3) £ (t,u,v) <——,¥(t,u,v) €[0,1]x[0,c]x[-L, L]
Ady17,
b
Amy

(Hs) f(tu,v)< 3/12bL

(H4) £ (t,u,v)>——,V(t,u,v) e[0,1]x[d,b,b] x[-L, L]

,V(t,u,v) €[0,1]x[0,b]x[-L, L]

Let '(tuv) :{ f (t,u,v), (t,u,v) €[0,1]x [0, b]x (~o0, )
f (t,b,v),(t,u,v) €[0,1] x (b, o0) x (—00, )
f*(t,u,v),(t,u,v) €[0,1]x[0,0) x[-L, L]
and f,(t,u,v) =1 f*(t,u,—L),(t,u,v) € [0,1]x[0, ) x (o0, ~L]
f(t,u,L),(t,u,v) €[0,2]x[0,00) x[L, 00)
Define3:

Tu)®) = 2], [1Q(t,9)Q, (5,7) f,(7,u(@),u ())d rds (5)
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(Tuy ® = A[[ [,Q (5. f,(z.u(e).u () drds - [ sQ,(s,2) 1, (z,u(r).u (¢))drds] (6)
Lemma 3.1: Suppose (H1) (H2) hold , thenT : K — K is completely continuous.
Proof: For ueK, by (5)and (iii) of Lemma 2.2, thereis Tu>0.s0

/I.[:j:Ql(t'S)Qz(svT) f.(z,u(z),u (r))dzds
< /1.[0 IO [0,G,(s,9) +w1I;Gl(s, X) p(x)dx]Q, (s,7) f,(z,u(z),u’(z))dzds
:lI:J.:Ql(S'S)Qz(SvT) f.(z,u(z),u (r))dzds

By Lemma 2.2, (ii), we have :

min (Tu)(®) = min /IJ' j Q(t,9)Q, (5, 7) f,(z,u(r),u'(r))d zds

[ufl, = max

> zjo [ [2G.(t.)G,(5.5) +, [, G,(5,X) P(X)AXIQ, (5. ) (7, (), U () d v

> 4,2 [ Qu(s,9)Q, (5. 7) ,(z,u(2), U (2))dzds =d, [Tu],
therefore, we get T(K)cK.
So we can getT(K)c K.LetB <« K is bounded, it is clear thatT(B) is bounded. Using
f,,G,(t,s),G,(t,s) IS continuous, we show that T(B)is equicontinuous. By the Arzela-Ascoli theorem,

a standard proof yields T:K — K is completely continuous.
Theorem 3.1:Suppose condition (H1)-(Hs)hold, Then BVP(1)has at least one positive solution u(t)

satisfying: c<a(u)<b,Bu)<L.
Proof : Take, = {ue X :[u(t)| <c.|u (1)< L} ,Q, ={ueX:[u)|<b|u'®)|< L} two bounded open sets in x
andD, ={ue X :a(u)=c},D, ={ue X :a(u) =b}.

By Lemma3.1, T:K — K is completely continuous operator, and there is 3p e (Q, nK)\{0},
such thata(p) #0 and a(u+4p)>a(u),YueK,A1>0.Vue D, nK,a(u)=c.

From(H3)we get:

a(Tu) = m%‘zﬂﬁqa, $)Q,(s,7) f, (7, u(z),u'(r))dzds

< AX

T [ [ 18,6, (t,0G(5,5) + @ [ Gy (5, ) p(X)dXIQ, (5, 7)d rdls

<d, xﬁ‘[:j:[Gl(S, $)+, [, G,(5,X) p(X)AXIQ, (5, 7)d s

: ijljlo_l(s, $)Q, (s,7)drds = C

Where as forvue D, nK,a(u)=b.From Lemma 2.4,we haveu(t)>da(u)=db,te[+,2].s0 from
(H4) we get:

m
a(Tu) = %

A j j Q,(t,5)Q,(s,7) f,(z,u(z),u (r))drds

>/1><—max1
177 te[0,1]

== j L"Ql(s,s)Qz(s,r)drds =b
/7R
vue K, From (Hs) we get:

B(Tu) = max zj j Q,(s,7) f,(z,u(z),u'(z))drds — zj j sQ,(s,7) f,(r,u(z),u' (r))dzds

te[0,1]

j j [b,G,(s,5) + o, j G, (s, %) p(x)dx]Q, (s, 7)dzds

< Ax

j j (1+5)Q, (s, 7)dzds

3Zb 17, te e

. 1+9)[b,G ‘G dx]dzd
<3 P! '[0'.-0( +)lb, 2(T’T)+Egl[gl,)l(]ab(s).'.o , (7, X)q(x)dx]d rds
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35:;72 j:[Gz (r.7)+ o, (%)_[:Gz(r, x)q(x)dx]dz| = L

Theorem 2.1 implies there is ue(Q,\Q,)~K, such thatu=Tu .so,u(t)is a positive solution for
BVP(1), satisfying : ¢ <a(u)<b, [n[%|u'(t)| <L.

<

3
bez

Thus, Theorem 3.1is completed.
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